Botched gauge settings might have contaminated Fukushima groundwater from April onward: Tepco — The Japan Times

” The discovery of falsely configured monitoring equipment at the stricken Fukushima No. 1 nuclear power plant means the groundwater flowing underneath it might have gotten contaminated from April onward, Tokyo Electric said Friday.

The utility said incorrect gauge settings were used to measure groundwater levels in six of the wells near reactors 1 and 4. This resulted in groundwater readings about 70 cm higher than reality, which means the beleaguered power utility has been mismanaging the groundwater there for months.

To prevent tainted water from leaking from the plant, Tokyo Electric Power Company Holdings Inc. installed water gauges so it could keep the groundwater levels in the wells a meter higher than the contaminated water in the buildings.

Tepco adjusts the amount of water in wells called subdrains around the buildings to keep the groundwater higher than the tainted water inside them, which prevents it from flowing out. If the groundwater levels sink below the level of the radioactive water, it might leak out.

On Friday, Tepco said the estimated groundwater level in one of the six subdrain wells close to reactor 1 fell below the level in the reactor building at least eight times during the five-day period to May 21 because the gauges were set incorrectly.

Groundwater levels were 2 mm to 19 mm lower than the level in the buildings, Tepco said, adding that it does not know precisely how long each of these problematic situations lasted because water level data is collected by the hour.

Tepco said groundwater levels in five other wells affected by the incorrect settings did not fall below the levels in the nearby reactor buildings.

All six are in the area surrounded by an underground ice wall designed to prevent groundwater leakage.

According to Tepco, the incorrect settings date as far back as April 19. The earliest error affected the gauge in a well where groundwater fell to hazardous levels.

In the world’s worst nuclear disaster since Chernobyl, reactors 1, 2 and 3 at the plant experienced core meltdowns and reactors 1, 3 and 4 were severely damaged by hydrogen explosions following a massive offshore earthquake that spawned large tsunami in March 2011. ”

by Jiji, Kyodo via The Japan Times

source

Advertisements

Fukushima’s decommissioning delays, challenges and unknowns remain roadblocks to cleanup — Beyond Nuclear

” Six and a half years after the Fukushima Daiichi triple meltdown, Japan’s government, the nuclear regulator and Tokyo Electric Power Company’s (TEPCO) most rudimentary plan of attack for recovery from radioactive catastrophe is delayed again. The first steps of decommissioning cannot legitimately begin until undamaged but highly radioactive “spent” fuel assemblies are removed from vulnerable reactor storage ponds, sufficiently cooled and re-contained in qualified dry storage casks.  Then, there are the three melted fuel cores that still must be located, retrieved and somehow re-contained. Where all of the massive radioactive contamination will go is a mystery.  In fact, there are an alarming number of challenges, continuing delays and unknowns that remain before securing the destroyed nuclear power station site and halting the ongoing release of radioactivity to the land, water and air.

Among the most immediate concerns is the management of 1007 highly radioactive and thermally hot irradiated nuclear fuel assemblies still in the two cooling pools perched atop the destroyed Units 1 and 2 outside of any containment structure. Each of the site’s six-units has an elevated nuclear waste storage pond. The site has a large common pool located near Unit 4. The government recently admitted that previously unknown, possibly undisclosed, damage in these irradiated fuel storage ponds and radioactive contamination has again delayed the plan to move the dangerous fuel assemblies by at least another three years, now 2023. Unit 3 remains on schedule in 2018 to begin the two-year transfer of 514 irradiated fuel assemblies from its rooftop storage pool to a jam-packed common onsite pool located at ground level. This common pool and its massive radioactive inventory requires reliable cooling power.  Unit 4 completed a three-year project to transfer its irradiated fuel into the common pool in 2014. The common pool now has 6,726 irrradiated fuel assemblies with a maximum design capacity of 6,840. As this common pool is already densely packed, it is ever more critical that Japan expedite the transfer of the sufficiently cooled irradiated nuclear fuel into qualified, individualized dry storage casks that can passively cool the hot nuclear waste without the need for water and electrical power. Currently, only 1,412 irradiated assemblies have been secured in onsite dry cask storage. These dry casks further need to be hardened against another natural disaster and possible terrorism.

The recurring delays at securing the irradiated fuel currently in wet pool storage (individual units to the common pool) and then into scientifically-qualified and hardened dry cask storage systems raises concern for public health, safety and the environment given the prospect of another large nearby earthquake causing a loss of cooling with the risk of a nuclear waste fire and radioactive releases. A 6.9 magnitude offshore earthquake on November 21, 2016 caused a temporary loss of cooling to wet storage systems at Fukushima Daiichi. Significant earthquakes of 6.0 to 6.9 magnitude occur in Japan on average 17 times per year, roughly one-tenth of all large earthquakes in the world. More severe earthquakes must be anticipated. The loss of cooling power and water to some or all of the more than 11,577 hot nuclear waste assemblies onsite outside of containment remains a significant public health, safety and environmental concern.

Japan is still technologically conceptualizing the “most challenging part” of Fukushima Daiichi’s decommissioning and the recovery of three missing melted reactor cores if and when they can be located. The unprecedented operation has now been delayed until 2019.  A viable technology for scooping up melted nuclear fuel does not yet exist. Re-containment and removal of the melted fuel cores is key to addressing the ongoing massive buildup of radioactive water now estimated at 800,000 tons that is being stored in growing onsite tank farms.  Groundwater flowing down into the reactor wreckage must be constantly pumped out, partially filtered of radioactivity and stored onsite in the large tanks. The tank farms themselves represent an additional environmental threat in the event of another severe earthquake that could rupture the structures with a radioactive flood into the ocean. ”

by Beyond Nuclear

source

Work to finish ice wall at crippled plant to begin — NHK World

” The operator of the crippled Fukushima Daiichi nuclear plant will begin the final phase of creating an underground ice wall on Tuesday.

Tokyo Electric Power Company started the work 17 months ago, with the aim of preventing groundwater from entering reactor buildings and getting contaminated with radioactive substances.

The 1.5-kilometer ice barrier is deemed a key step to curb the buildup of tainted water at the plant.

The soil is frozen by sending liquid at minus 30 degrees Celsius into pipes buried around the buildings. But the utility has left a 7-meter section unfrozen, fearing the sudden fall in groundwater levels around the buildings.

There were concerns that the difference of water levels in and outside the reactor buildings would cause tainted water inside to leak out.

But last Tuesday, the Nuclear Regulation Authority said safety measures are ready and gave its approval to freeze of the final section.

Officials of the utility say they will carefully monitor the freezing process of the remaining section.

They say it may take longer to fully freeze than other areas, because the flow of groundwater has been concentrated in that section.

The officials expect that the wall, when completed, will reduce the inflow of groundwater to the buildings from 140 tons a day to less than 100 tons. ”

by NHK World

source

High-priced Fukushima ice wall nears completion, but effectiveness doubtful — The Mainichi

” A subterranean ice wall surrounding the nuclear reactors at the stricken Fukushima No. 1 Nuclear Power Plant to block groundwater from flowing in and out of the plant buildings has approached completion.

Initially, the ice wall was lauded as a trump card in controlling radioactively contaminated water at the plant in Fukushima Prefecture, which was crippled by meltdowns in the wake of the March 2011 Great East Japan Earthquake and tsunami. But while 34.5 billion yen from government coffers has already been invested in the wall, doubts remain about its effectiveness. Meanwhile, the issue of water contamination looms over decommissioning work.

In a news conference at the end of July, Naohiro Masuda, president and chief decommissioning officer of Fukushima Daiichi Decontamination & Decommissioning Engineering Co., stated, “We feel that the ice wall is becoming quite effective.” However, he had no articulate answer when pressed for concrete details, stating, “I can’t say how effective.”

The ice wall is created by circulating a coolant with a temperature of minus 30 degrees Celsius through 1,568 pipes that extend to a depth of 30 meters below the surface around the plant’s reactors. The soil around the pipes freezes to form a wall, which is supposed to stop groundwater from flowing into the reactor buildings where it becomes contaminated. A total of 260,000 people have worked on creating the wall. The plant’s operator, Tokyo Electric Power Co. (TEPCO) began freezing soil in March last year, and as of Aug. 15, at least 99 percent of the wall had been completed, leaving just a 7-meter section to be frozen.

Soon after the outbreak of the nuclear disaster, about 400 tons of contaminated water was being produced each day. That figure has now dropped to roughly 130 tons. This is largely due to the introduction of a subdrain system in which water is drawn from about 40 wells around the reactor buildings. As for the ice wall, TEPCO has not provided any concrete information on its effectiveness. An official of the Secretariat of the Nuclear Regulation Authority (NRA) commented, “The subdrain performs the primary role, and the ice wall will probably be effective enough to supplement that.” This indicates that officials have largely backtracked from their designation of the ice wall as an effective means of battling contaminated water, and suggests there is unlikely to be a dramatic decrease in the amount of decontaminated groundwater once the ice wall is fully operational.

TEPCO ordered construction of the ice wall in May 2013 as one of several plans proposed by major construction firms that was selected by the government’s Committee on Countermeasures for Contaminated Water Treatment. In autumn of that year Tokyo was bidding to host the 2020 Olympic and Paralympic Games, and the government sought to come to the fore and underscore its measures to deal with contaminated water on the global stage.

Using taxpayers’ money to cover an incident at a private company raised the possibility of a public backlash. But one official connected with the Committee on Countermeasures for Contaminated Water Treatment commented, “It was accepted that public funds could be spent if those funds were for the ice wall, which was a challenging project that had not been undertaken before.” Small-scale ice walls had been created in the past, but the scale of this one — extending 1.5 kilometers and taking years to complete — was unprecedented.

At first, the government and TEPCO explained that an ice wall could be created more quickly than a wall of clay and other barriers, and that if anything went wrong, the wall could be melted, returning the soil to its original state. However, fears emerged that if the level of groundwater around the reactor buildings drops as a result of the ice wall blocking the groundwater, then tainted water inside the reactor buildings could end up at a higher level, causing it to leak outside the building. Officials decided to freeze the soil in stages to measure the effects and effectiveness of the ice wall. As a result, full-scale operation of the wall — originally slated for fiscal 2015 — has been significantly delayed.

Furthermore, during screening by the NRA, which had approved the project, experts raised doubts about how effective the ice wall would be in blocking groundwater. The ironic reason for approving its full-scale operation, in the words of NRA acting head Toyoshi Fuketa, was that, “It has not been effective in blocking water, so we can go ahead with freezing with peace of mind” — without worrying that the level of groundwater surrounding the reactor buildings will decrease, causing the contaminated water inside to flow out.

Maintaining the ice wall will cost over a billion yen a year, and the radiation exposure of workers involved in its maintenance is high. Meanwhile, there are no immediate prospects of being able to repair the basement damage in the reactor buildings at the crippled nuclear plant.

Nagoya University professor emeritus Akira Asaoka commented, “The way things stand, we’ll have to keep maintaining an ice wall that isn’t very effective. We should consider a different type of wall.”

In the meantime, TEPCO continues to be plagued over what to do with treated water at the plant. Tainted water is treated using TEPCO’s multi-nuclide removal equipment to remove 62 types of radioactive substances, but in principle, tritium cannot be removed during this process. Tritium is produced in nature through cosmic rays, and nuclear facilities around the world release it into the sea. The NRA takes the view that there is no problem with releasing treated water into the sea, but there is strong resistance to such a move, mainly from local fishing workers who are concerned about consumer fears that could damage their businesses. TEPCO has built tanks on the grounds of the Fukushima No. 1 plant to hold treated water, and the amount they hold is approaching 800,000 metric tons.

In mid-July, TEPCO Chairman Takashi Kawamura said in an interview with several news organizations that a decision to release the treated water into the sea had “already been made.” A Kyodo News report on his comment stirred a backlash from members of the fishing industry. TEPCO responded with an explanation that the chairman was not stating a course of action, but was merely agreeing with the view of the NRA that there were no problems scientifically with releasing the treated water. However, the anger from his comment has not subsided.

Critical opinions emerged in a subsequent meeting that the Ministry of Economy, Trade and Industry held in the Fukushima Prefecture city of Iwaki at the end of July regarding the decontamination of reactors and the handling of contaminated water. It was pointed out that prefectural residents had united to combat consumer fears and that they wanted officials to act with care. One participant asked whether the TEPCO chairman really knew about Fukushima.

The ministry has been considering ways to handle the treated water, setting up a committee in November last year that includes experts on risk evaluation and sociology. As of Aug. 15, five meetings had been held, but officials have yet to converge on a single opinion. “It’s not that easy for us to say, ‘Please let us release it.’ It will probably take some time to reach a conclusion,” a government official commented. “

by The Mainichi

source

NRA: Ice wall effects ‘limited’ at Fukushima nuclear plant — The Asahi Shimbun

” Citing “limited, if any effects,” the Nuclear Regulation Authority said a highly touted “frozen soil wall” should be relegated to a secondary role in reducing contaminated groundwater at the Fukushima No. 1 nuclear plant.

The government spent 34.5 billion yen ($292 million) to build the underground ice wall to prevent groundwater from mixing with radioactive water in four reactor buildings at the crippled plant.

But the NRA, Japan’s nuclear watchdog, concluded on Dec. 26 that the wall has been ineffective in diverting the water away from the buildings. It said that despite the low rainfall over the past several months, the amount of groundwater pumped up through wells outside the frozen wall on the seaside is still well above the reduction target.

It urged the plant operator, Tokyo Electric Power Co., to tackle the groundwater problem primarily with pumps, not the ice wall.

In response, TEPCO at the meeting said that by next autumn, it will double its capacity to pump up groundwater from the current 800 tons a day.

About 400 tons of groundwater enters the damaged reactor buildings each day and mixes with highly radioactive water used to cool melted nuclear fuel.

The ice wall project, compiled by the industry ministry in May 2013, was seen as a fundamental solution to this problem that has hampered TEPCO’s cleanup efforts since the triple meltdown in March 2011.

Some 1,568 frozen ducts were inserted 30 meters deep into the ground to circulate a liquid at 30 degrees below zero. The freezing process was supposed to have created a solid wall of ice that could block the groundwater.

TEPCO began freezing the wall on the seaside in March. It announced in the middle of October that the temperature at all measuring points in that area was below zero.

Before the frozen wall project, TEPCO had to pump up about 300 tons of contaminated water a day. The daily volume dropped to about 130 tons in recent weeks, but it was still well beyond the target of 70 tons.

Still, TEPCO boasted about the effectiveness of the ice wall at the meeting with the NRA on Dec. 26, saying, “We are seeing certain results.”

The NRA, however, said the results are limited at best.

Toyoshi Fuketa, an NRA commissioner, already warned TEPCO in October that it cannot expect the ice wall to be highly effective in containing the groundwater.

“Pumping up groundwater through wells should be the main player because it can reliably control the groundwater level,” Fuketa said at that time. “The ice wall will play a supporting role.”

That sentiment was echoed at the Dec. 26 meeting.

However, the NRA approved the utility’s plan to begin freezing dirt for a wall on the mountain side of the nuclear plant.

The NRA was previously concerned about risks posed by the new ice wall. If it totally blocked groundwater from the mountain side, the water level within the frozen soil near the reactors could become too low, allowing highly contaminated water inside the reactor buildings to flow out more rapidly.

The NRA urged TEPCO to delay work on the mountain side until the ice wall on the seaside portion proved effective.

But it reversed its stance, saying a sharp drop in the groundwater level is unlikely based on the ineffectiveness of the existing ice wall.

“The frozen wall on the mountain side will not be able to block groundwater because the wall on the seaside was also unable to do so,” Fuketa said. “It will not be very dangerous to freeze the wall on the mountain side as long as the work is carried out carefully.”

TEPCO will start the work to freeze the ducts at five sections as early as next year.

Masashi Kamon, professor emeritus of geotechniques at Kyoto University, expressed skepticism about continuing the ice wall project without a full scrutiny of the underground conditions.

“Soil around the tunnels for underground pipes must be hard to freeze,” he said. “TEPCO should find out the conditions of the very bottom of the ice wall by drilling at least one section. It is questionable to continue with the project without a review.” ”

by Kohei Tomida

source

Accelerate water-purifying work at Fukushima plant to cut leakage risk — The Yomiuri Shimbun

” The volume of contaminated water continues to increase at Tokyo Electric Power Company Holdings Inc.’s Fukushima No. 1 nuclear power plant. Efforts to deal with this problem must be reinforced.

TEPCO has compiled a new set of measures to deal with the radioactive water. The steps are aimed at reducing to nearly zero the contaminated water inside reactor buildings, the prime source of the tainted water.

Under the new measures, the contaminated water accumulated in the basements of reactor buildings is to be purified and then transferred to storage tanks. At the same time, facilities exclusively used for purifying the tainted water are to be doubled, and the existing storage tanks will be replaced with larger ones, increasing the overall storage capacity.

Meanwhile, the volume of groundwater to be pumped up from the wells near the reactor buildings is to be increased. This is aimed at reducing the flow of underground water into the buildings, thus preventing a vicious cycle of generating more tainted water.

If all goes well, the increase in the volume of contaminated water is expected to nearly stop by 2020. We hope TEPCO will realize this goal steadily.

The measures taken so far have centered on the construction of “ice walls,” to prevent groundwater from entering the reactor buildings by freezing the underground soil around the buildings. Because this step has failed to prove effective even more than half a year after the related facilities were put into operation, TEPCO decided to shift its priority measures.

The new measures will require the approval of the Nuclear Regulation Authority. Both TEPCO and the NRA must cooperate closely so that the necessary work will not be delayed.

Consider ocean release

The reactor buildings have, in effect, turned into storage facilities for contaminated water. The volume of tainted water totals about 68,000 tons. Although the amount of radioactive material contained in the water has declined markedly when compared to the amount immediately after the nuclear accident occurred, it still remains at a high level.

The large amount of contaminated water inside the reactor buildings carries a risk of radiation exposure, posing a serious impediment to the work to decommission the plant. If highly radioactive water starts leaking underground out of the buildings and into the sea, it will create a serious situation.

Even if new measures proceed smoothly, however, tasks remain. The volume of purified water to be stored in the tanks is expected to nearly double by 2020 to about 1.2 million tons. Not only will this entail a huge maintenance cost, but there is also a danger that the water will leak if the tanks are damaged by an earthquake or other factors.

Releasing purified water that has met the existing safety criteria into the sea must be seriously considered. The discharge of purified water into the ocean has been routinely conducted at nuclear power-related facilities both at home and abroad.

It is important for both the government and TEPCO to do their utmost to explain such a plan in detail in order to win the understanding of local residents concerned. Efforts should also be made to take measures to prevent groundless rumors from adversely affecting the fisheries industry and other sectors.

It is also necessary to continuously ascertain the effect of the ice walls. Although nearly 100 percent of the walls have already been frozen, groundwater is reportedly flowing through thin gaps in the walls. Rainwater seeping through the topsoil has also increased the amount of groundwater inside the buildings.

TEPCO is proceeding with work to fill the gaps in the ice walls. If the work proves effective, the goal of reducing to zero the increase in the contaminated water will be realized two years earlier than envisaged. We hope TEPCO will strenuously work to block the flow of groundwater into the buildings. ”

source