Fukushima court rules Tepco, government liable over 2011 disaster — Reuters

” TOKYO (Reuters) – A district court in Fukushima prefecture on Tuesday ruled that Tokyo Electric Power and the Japanese government were liable for damages totaling about 500 million yen ($4.44 million) in the largest class action lawsuit brought over the 2011 nuclear disaster, Kyodo news agency said.

A group of about 3,800 people, mostly in Fukushima prefecture, filed the class action suit, marking the biggest number of plaintiffs out of about 30 similar class action lawsuits filed across the nation.

This is the second court ruling that fixed the government’s responsibility after a Maebashi district court decision in March.

All the three district court decisions so far have ordered Tepco to pay damages. Only the Chiba court decision last month did not find the government liable for compensation.

The plaintiffs in Fukushima case have called on defendants for reinstating the levels of radioactivity at their homes before the disaster, but the court rejected the request, Kyodo said.

Tepco has long been criticized for ignoring the threat posed by natural disasters to the Fukushima plant and the company and the government were lambasted for their handling of the crisis. “

reporting by Osamu Tsukimori and Aaron Sheldrick; editing by Christian Schmollinger and Gopakumar Warrier, Reuters

source

Advertisements

Muons suggest location of fuel in unit 3 — World Nuclear News

” Some of the fuel in the damaged unit 3 of the Fukushima Daiichi plant has melted and dropped into the primary containment vessel, initial results from using a muon detection system indicate. Part of the fuel, however, is believed to remain in the reactor pressure vessel.

Muons are high-energy subatomic particles that are created when cosmic rays enter Earth’s upper atmosphere. These particles naturally and harmlessly strike the Earth’s surface at a rate of some 10,000 muons per square meter per minute. Muon tracking devices detect and track these particles as they pass through objects. Subtle changes in the trajectory of the muons as they penetrate materials and change in direction correlate with material density. Nuclear materials such as uranium and plutonium are very dense and are therefore relatively easy to identify. The muon detection system uses the so-called permeation method to measure the muon data.

Tokyo Electric Power Company (Tepco) installed a muon detection system on the first floor of unit 3’s turbine building. Measurements were taken between May and September this year.

Tepco said analysis of muon examinations of the fuel debris shows that most of the fuel has melted and dropped from its original position within the core.

Prior to the 2011 accident, some 160 tonnes of fuel rods and about 15 tonnes of control rods were located within the reactor core of unit 3. The upper and lower parts of the reactor vessel contains about 35 tonnes and 80 tonnes of structures, respectively.

The muon examination indicates that most of the debris – some 160 tonnes – had fallen to the bottom of the reactor pressure vessel and resolidified, with only about 30 tonnes remaining in the reactor core. Tepco said another 90 tonnes of debris remains in the upper part of the vessel.

The bulk of the fuel and structures in the core area dropped to the bottom of the reactor pressure vessel (RPV), Tepco believes. While part of the molten fuel is understood to have then fallen into the primary containment vessel (PCV), “there is a possibility that some fuel debris remains in the bottom of the RPV, though this is uncertain”, the company noted.

Similar muon measurements have already been conducted at units 1 and 2 at Fukushima Daiichi. Measurements taken at unit 1 between February and September 2015 indicated most of the fuel was no longer in the reactor’s core area. Measurements taken between March and July 2016 at unit 2 showed high-density materials, considered to be fuel debris, in the lower area of the RPV. Tepco said that more fuel debris may have fallen into the PCV in unit 3 than in unit 2.

Tepco said the results obtained from the muon measurements together with knowledge obtained from internal investigations of the primary containment vessels using remote-controlled robots will help it plan the future removal of fuel debris from the damaged units. ”

by World Nuclear News

source with illustration of Unit 1-3

Botched gauge settings might have contaminated Fukushima groundwater from April onward: Tepco — The Japan Times

” The discovery of falsely configured monitoring equipment at the stricken Fukushima No. 1 nuclear power plant means the groundwater flowing underneath it might have gotten contaminated from April onward, Tokyo Electric said Friday.

The utility said incorrect gauge settings were used to measure groundwater levels in six of the wells near reactors 1 and 4. This resulted in groundwater readings about 70 cm higher than reality, which means the beleaguered power utility has been mismanaging the groundwater there for months.

To prevent tainted water from leaking from the plant, Tokyo Electric Power Company Holdings Inc. installed water gauges so it could keep the groundwater levels in the wells a meter higher than the contaminated water in the buildings.

Tepco adjusts the amount of water in wells called subdrains around the buildings to keep the groundwater higher than the tainted water inside them, which prevents it from flowing out. If the groundwater levels sink below the level of the radioactive water, it might leak out.

On Friday, Tepco said the estimated groundwater level in one of the six subdrain wells close to reactor 1 fell below the level in the reactor building at least eight times during the five-day period to May 21 because the gauges were set incorrectly.

Groundwater levels were 2 mm to 19 mm lower than the level in the buildings, Tepco said, adding that it does not know precisely how long each of these problematic situations lasted because water level data is collected by the hour.

Tepco said groundwater levels in five other wells affected by the incorrect settings did not fall below the levels in the nearby reactor buildings.

All six are in the area surrounded by an underground ice wall designed to prevent groundwater leakage.

According to Tepco, the incorrect settings date as far back as April 19. The earliest error affected the gauge in a well where groundwater fell to hazardous levels.

In the world’s worst nuclear disaster since Chernobyl, reactors 1, 2 and 3 at the plant experienced core meltdowns and reactors 1, 3 and 4 were severely damaged by hydrogen explosions following a massive offshore earthquake that spawned large tsunami in March 2011. ”

by Jiji, Kyodo via The Japan Times

source

Fukushima’s decommissioning delays, challenges and unknowns remain roadblocks to cleanup — Beyond Nuclear

” Six and a half years after the Fukushima Daiichi triple meltdown, Japan’s government, the nuclear regulator and Tokyo Electric Power Company’s (TEPCO) most rudimentary plan of attack for recovery from radioactive catastrophe is delayed again. The first steps of decommissioning cannot legitimately begin until undamaged but highly radioactive “spent” fuel assemblies are removed from vulnerable reactor storage ponds, sufficiently cooled and re-contained in qualified dry storage casks.  Then, there are the three melted fuel cores that still must be located, retrieved and somehow re-contained. Where all of the massive radioactive contamination will go is a mystery.  In fact, there are an alarming number of challenges, continuing delays and unknowns that remain before securing the destroyed nuclear power station site and halting the ongoing release of radioactivity to the land, water and air.

Among the most immediate concerns is the management of 1007 highly radioactive and thermally hot irradiated nuclear fuel assemblies still in the two cooling pools perched atop the destroyed Units 1 and 2 outside of any containment structure. Each of the site’s six-units has an elevated nuclear waste storage pond. The site has a large common pool located near Unit 4. The government recently admitted that previously unknown, possibly undisclosed, damage in these irradiated fuel storage ponds and radioactive contamination has again delayed the plan to move the dangerous fuel assemblies by at least another three years, now 2023. Unit 3 remains on schedule in 2018 to begin the two-year transfer of 514 irradiated fuel assemblies from its rooftop storage pool to a jam-packed common onsite pool located at ground level. This common pool and its massive radioactive inventory requires reliable cooling power.  Unit 4 completed a three-year project to transfer its irradiated fuel into the common pool in 2014. The common pool now has 6,726 irrradiated fuel assemblies with a maximum design capacity of 6,840. As this common pool is already densely packed, it is ever more critical that Japan expedite the transfer of the sufficiently cooled irradiated nuclear fuel into qualified, individualized dry storage casks that can passively cool the hot nuclear waste without the need for water and electrical power. Currently, only 1,412 irradiated assemblies have been secured in onsite dry cask storage. These dry casks further need to be hardened against another natural disaster and possible terrorism.

The recurring delays at securing the irradiated fuel currently in wet pool storage (individual units to the common pool) and then into scientifically-qualified and hardened dry cask storage systems raises concern for public health, safety and the environment given the prospect of another large nearby earthquake causing a loss of cooling with the risk of a nuclear waste fire and radioactive releases. A 6.9 magnitude offshore earthquake on November 21, 2016 caused a temporary loss of cooling to wet storage systems at Fukushima Daiichi. Significant earthquakes of 6.0 to 6.9 magnitude occur in Japan on average 17 times per year, roughly one-tenth of all large earthquakes in the world. More severe earthquakes must be anticipated. The loss of cooling power and water to some or all of the more than 11,577 hot nuclear waste assemblies onsite outside of containment remains a significant public health, safety and environmental concern.

Japan is still technologically conceptualizing the “most challenging part” of Fukushima Daiichi’s decommissioning and the recovery of three missing melted reactor cores if and when they can be located. The unprecedented operation has now been delayed until 2019.  A viable technology for scooping up melted nuclear fuel does not yet exist. Re-containment and removal of the melted fuel cores is key to addressing the ongoing massive buildup of radioactive water now estimated at 800,000 tons that is being stored in growing onsite tank farms.  Groundwater flowing down into the reactor wreckage must be constantly pumped out, partially filtered of radioactivity and stored onsite in the large tanks. The tank farms themselves represent an additional environmental threat in the event of another severe earthquake that could rupture the structures with a radioactive flood into the ocean. ”

by Beyond Nuclear

source

Tepco ordered to pay evacuees of Fukushima nuclear disaster — The Asahi Shimbun

” CHIBA–A district court here on Sept. 22 ordered Tokyo Electric Power Co. to pay 376 million yen ($3.3 million) in compensation to evacuees of the Fukushima nuclear disaster but absolved the central government of responsibility.

Forty-five people in 18 households who evacuated to Chiba Prefecture following the 2011 meltdowns at the Fukushima No. 1 nuclear plant sought a total of about 2.8 billion yen from TEPCO and the government.

About 30 similar lawsuits involving 12,000 plaintiffs have been filed at district courts around Japan.

The Chiba District Court ruling was the second so far.

In March, the Maebashi District Court in Gunma Prefecture found both TEPCO and the government responsible for the nuclear disaster and ordered compensation totaling 38.55 million yen for 62 plaintiffs.

The main point of the lawsuit in the Chiba District Court was whether TEPCO and the government could have foreseen a towering tsunami hitting the Fukushima No. 1 nuclear plant and taken measures to prevent the disaster.

The plaintiffs emphasized a long-term appraisal released by the central government in 2002, which estimated a 20-percent possibility of a magnitude-8 level earthquake occurring between the coast off the Sanriku region in the Tohoku region to the coast off the Boso Peninsula of Chiba Prefecture within the next 30 years.

The plaintiffs argued that this appraisal shows it was possible to forecast a tsunami off the coast from the Fukushima No. 1 nuclear plant, and that measures could have been taken even as late as 2006 to prevent the disaster.

For the first time in a court case involving compensation related to the Fukushima disaster, a seismologist provided testimony on behalf of the plaintiffs.

Kunihiko Shimazaki, a professor emeritus at the University of Tokyo, once served as a deputy chairman of the Nuclear Regulation Authority. He was also in charge of compiling the 2002 long-term appraisal for the government.

“The height of a likely tsunami could have been known if it was calculated based on that appraisal,” Shimazaki said in court. “Even if a specific forecast could not be made, some sort of countermeasure could have been taken.”

The defendants argued that the long-term appraisal did not provide a specific basis for predicting a tsunami and only pointed to the fact that a magnitude-8 level earthquake occurring could not be ruled out. ”

by Nobuyuki Takiguchi, The Asahi Shimbun

source

Tepco to delay emptying fuel storage pools at Fukushima plant — The Asahi Shimbun

” Plans to remove fuel rods from two spent fuel pools at the Fukushima No. 1 nuclear plant will be delayed by up to three years because of difficulties in clearing debris and reducing radiation levels.

The government and plant operator Tokyo Electric Power Co. originally expected to start emptying the storage pools at the No. 1 and No. 2 reactor buildings in fiscal 2020.

But they plan to move the starting time to fiscal 2023 in their first review in two years of the roadmap for decommissioning the stricken nuclear plant, sources said Sept. 20.

They are expected to announce the revised roadmap later this month.

A survey of the upper levels of the two reactor buildings, where the storage pools are located, found debris piled up in a much more complicated way than initially envisaged.

That will lengthen the time needed to clear the debris, thus delaying the removal of the fuel rods, the sources said.

In addition, radiation levels remain extremely high inside the buildings.

The No. 1 reactor’s storage pool holds 392 nuclear fuel assemblies, while the No. 2 reactor’s pool has 615 assemblies.

Work to remove the 566 assemblies from the No. 3 reactor’s pool is scheduled to begin in the middle of fiscal 2018 as originally planned.

The three reactors melted down in the 2011 disaster, triggered by the magnitude-9.0 Great East Japan Earthquake and tsunami.

The review of the decommissioning roadmap is also expected to revise the target of “starting the removal” of melted nuclear fuel and debris in the three reactors in 2021 to “aiming to start the removal” in 2021.

But the government and TEPCO will maintain the goal of completing the decommissioning in “30 to 40 years,” the sources said. ”

by Chikako Kawahara, The Asahi Shimbun

source