Muons suggest location of fuel in unit 3 — World Nuclear News

” Some of the fuel in the damaged unit 3 of the Fukushima Daiichi plant has melted and dropped into the primary containment vessel, initial results from using a muon detection system indicate. Part of the fuel, however, is believed to remain in the reactor pressure vessel.

Muons are high-energy subatomic particles that are created when cosmic rays enter Earth’s upper atmosphere. These particles naturally and harmlessly strike the Earth’s surface at a rate of some 10,000 muons per square meter per minute. Muon tracking devices detect and track these particles as they pass through objects. Subtle changes in the trajectory of the muons as they penetrate materials and change in direction correlate with material density. Nuclear materials such as uranium and plutonium are very dense and are therefore relatively easy to identify. The muon detection system uses the so-called permeation method to measure the muon data.

Tokyo Electric Power Company (Tepco) installed a muon detection system on the first floor of unit 3’s turbine building. Measurements were taken between May and September this year.

Tepco said analysis of muon examinations of the fuel debris shows that most of the fuel has melted and dropped from its original position within the core.

Prior to the 2011 accident, some 160 tonnes of fuel rods and about 15 tonnes of control rods were located within the reactor core of unit 3. The upper and lower parts of the reactor vessel contains about 35 tonnes and 80 tonnes of structures, respectively.

The muon examination indicates that most of the debris – some 160 tonnes – had fallen to the bottom of the reactor pressure vessel and resolidified, with only about 30 tonnes remaining in the reactor core. Tepco said another 90 tonnes of debris remains in the upper part of the vessel.

The bulk of the fuel and structures in the core area dropped to the bottom of the reactor pressure vessel (RPV), Tepco believes. While part of the molten fuel is understood to have then fallen into the primary containment vessel (PCV), “there is a possibility that some fuel debris remains in the bottom of the RPV, though this is uncertain”, the company noted.

Similar muon measurements have already been conducted at units 1 and 2 at Fukushima Daiichi. Measurements taken at unit 1 between February and September 2015 indicated most of the fuel was no longer in the reactor’s core area. Measurements taken between March and July 2016 at unit 2 showed high-density materials, considered to be fuel debris, in the lower area of the RPV. Tepco said that more fuel debris may have fallen into the PCV in unit 3 than in unit 2.

Tepco said the results obtained from the muon measurements together with knowledge obtained from internal investigations of the primary containment vessels using remote-controlled robots will help it plan the future removal of fuel debris from the damaged units. ”

by World Nuclear News

source with illustration of Unit 1-3

Advertisements

Fukushima cleanup chief urges better use of probe robot — The Seattle Times

” TOKYO (AP) — The head of decommissioning for the damaged Fukushima nuclear plant said Thursday that more creativity is needed in developing robots to locate and assess the condition of melted fuel rods.

A robot sent inside the Unit 2 containment vessel last month could not reach as close to the core area as was hoped for because it was blocked by deposits, believed to be a mixture of melted fuel and broken pieces of structures inside. Naohiro Masuda, president of Fukushima Dai-ichi Decommissioning, said he wants another probe sent in before deciding on methods to remove the reactor’s debris.

Unit 2 is one of the Fukushima reactors that melted down following the 2011 earthquake and tsunami.

The plant’s operator, Tokyo Electric Power Co., needs to know the melted fuel’s exact location as well as structural damage in each of the three wrecked reactors to figure out the best and safest ways to remove the fuel. Probes must rely on remote-controlled robots because radiation levels are too high for humans to survive.

Despite the incomplete probe missions, officials have said they want to stick to their schedule to determine the removal methods this summer and start work in 2021.

Earlier probes have suggested worse-than-anticipated challenges for the plant’s cleanup, which is expected to take decades. During the Unit 2 probe in early February, the “scorpion” robot crawler stalled after its total radiation exposure reached its limit in two hours, one-fifth of what was anticipated.

“We should think out of the box so we can examine the bottom of the core and how melted fuel debris spread out,” Masuda told reporters.

Probes are also being planned for the other two reactors. A tiny waterproof robot will be sent into Unit 1 in coming weeks, while experts are still trying to figure out a way to access the badly damaged Unit 3.

TEPCO is struggling with the plant’s decommissioning. The 2011 meltdown forced tens of thousands of nearby residents to evacuate their homes, and many have still not been able to return home due to high radiation levels.

Cleanup of communities outside of the plant is also a challenge. The cost has reportedly almost doubled to 4 trillion yen ($35 billion) from an earlier estimate. On Thursday, police arrested an Environment Ministry employee for allegedly taking bribes from a local construction firm president, media reports said. ”

by Mari Yamaguchi, The Associated Press

source

Lost in translation: Fukushima readings are not new spikes, just the same “hot mess” that’s always been there — Beyond Nuclear

” The ongoing Fukushima nuclear catastrophe has been back in the news lately following record high readings at the reactor site. Radiation levels were estimated to be 530 sieverts per hour, the highest recorded since the triple core meltdown in March 2011.

But upon further examination, the story has been misreported, in part due to mistranslation. In fact, according to Nancy Foust of SimplyInfo.org, interviewed on Nuclear Hotseat, there was no spike. High readings were in expected locations that TEPCO was only able to access recently. Therefore, the reading became evident because workers were getting closer to the melted fuel in more dangerous parts of the facility. In other words, it’s not a new hot mess, just the same hot mess it’s always been, pretty much from the beginning. The good news is nothing has changed. The bad news is – nothing has changed.

The confusion was initially caused by a translation error that SimplyInfo.org thinks occurred between the Kyoto News and Japan Times. Since this happened, Foust and her group have been trying to get news sources to correct the stories, with limited success.

The elevated radiation levels are inside containment (good news) in ruined unit 2 and were discovered using a camera, not proper radiation monitors. Therefore, the high reading may not be reliable since it is an estimate based on interference data with the camera. (It has been reported that the 530 Sievert/hour figure could be 30% too low, or 30% too high. 530 Sieverts/hour equates with 53,000 Rems/hour, a dose rate that would deliver a fatal dose of radiation to a person a short distance away, with no radiation shielding, in a minute or less exposure time.) TEPCO is planning on sending in a robot properly equipped with radiation detectors to take a reliable reading. Although no date has been given, TEPCO indicates it expects to deploy the robot within 30 days or so.

Foust theorizes that the bulk of the melted irradiated nuclear fuel is probably right below the reactor vessel burned into the concrete below. No one knows if melted irradiated nuclear fuel has gone into the ground water below that. ”

by Beyond Nuclear

source

Small robot to probe Fukushima Daiichi — NHK World

Read the latest technical updates on the robot’s ability to probe Unit 2 for a estimated limit of 2 hours, down from its originally estimated 10-hour lifespan.

* * *

” Engineers at Tokyo Electric Power Company decommissioning the Fukushima Daiichi nuclear plant are hoping a tiny camera will show them where melted fuel is located inside the crippled No. 2 reactor.

The camera is the latest bit of technology TEPCO engineers are pinning their hopes on. They want to insert it inside Fukushima Daiichi’s No.2 reactor containment vessel for the first time, and they can finally learn whether the fuel is inside, or whether it has penetrated through.

It’s a question they’ve been asking since 2011. Three of the plant’s reactors melted down that March, following a powerful earthquake and tsunami. High radiation levels have prevented anyone from going inside to find the molten fuel.

Experts believe it may have mixed with structures at the bottom of the containment vessels and formed “fuel debris” and on Tuesday, they hoped to catch a glimpse inside. But early on, they ran into trouble and had to reschedule.

Over the years, various remote-controlled robots have been sent inside the 3 reactors, but they haven’t gotten any clear pictures yet of fuel debris.

TEPCO plans to send in another robot to Reactor 2 next month. The utility hopes to be able to analyze results from this research, and create a plan for removing debris by summer.

But it will be a long road — they’ve estimated it will take as long as 4 decades to dismantle the plant, and this first step is the most difficult. ”

source

Fukushima Daiichi decay heat and corium status report — SimplyInfo

Read SimplyInfo’s fantastic summary of all of the studies regarding the movement and behavior of the melted corium in Fukushima Daiichi’s reactors 1, 2, and 3 along with an analysis that provides an estimate of where the melted fuel may be located.

by Dean Wilkie, nuclear engineer
edited by Nancy Foust

source

Bulk of melted fuel in No. 2 reactor at damaged Fukushima plant at bottom of pressure vessel: Tepco — The Japan Times

” Most of the melted nuclear fuel inside the No. 2 reactor at the disaster-hit Fukushima No. 1 power plant is likely located at the bottom of its pressure vessel, Tokyo Electric Power Company Holdings Inc. has revealed.

According to a study that used a cosmic ray imaging system, an estimated 130 tons of the so-called fuel debris remains at the bottom of the vessel, the first time the location and amount of the melted fuel have been estimated.

The finding, announced on Thursday, is important as the data could help the operator to narrow down methods to remove the fuel debris, the most challenging task in decommissioning the plant’s Nos. 1 to 3 reactors that experienced meltdowns in the nuclear crisis that began in March 2011.

Tepco plans to decide how to start removing the debris in two years, with work to start in 2021.

The cosmic-ray study was carried out by a team involving Tokyo Electric and the High Energy Accelerator Research Organization in Ibaraki Prefecture.

As high radiation levels are continuing to hamper direct access to the reactors, researchers have tracked muon elementary particles, which are produced as cosmic rays collide with atmospheric particles and change course when coming into contact with nuclear fuel.

The No. 2 reactor was in operation when the nuclear crisis was triggered by a powerful earthquake and subsequent tsunami that devastated Japan’s northeast.

About 160 tons of fuel assemblies are estimated to have been present inside the reactor vessel prior to the crisis. Most of the fuel is believed to have fallen to the bottom of the pressure vessel and mixed with nearby structures to form the debris.

In the nuclear crisis, massive amounts of radioactive substances were released into the environment, with the Nos. 1, 3 and 4 reactor buildings damaged by hydrogen explosions.

The No. 4 reactor was offline for routine maintenance work and all of its fuel was stored in the spent fuel pool, avoiding a meltdown. The utility removed all fuel rod assemblies from the pool and transported them to a more stable building in 2014.

Also on Thursday, Tepco said it plans to seek additional financial support from the government to cover soaring costs for dealing with the disaster.

Tepco specifically asked the government to clarify its views on how the costs for providing compensation to affected residents and the decommissioning of the plant should be shouldered.

Each request for additional aid will be carefully scrutinized by the government out of concern it could come under fire from taxpayers, sources said.

The government has already agreed to provide up to ¥9 trillion in loans to Tepco to cover ¥5.4 trillion in compensation to be paid to affected residents and ¥2.5 trillion in decontamination costs that were projected in January 2014.

But Tepco said compensation payments have already topped ¥6 trillion and that decontamination costs are increasingly likely to exceed estimates.

The utility also said it is concerned about massive costs to be incurred when it starts full-fledged decommissioning work at the damaged nuclear plant.

If the situation is left unaddressed, Tepco’s market value will suffer, Executive Officer Keita Nishiyama said.

Tepco President Naomi Hirose said that although overall compensation costs have not been fixed, his company will consult with the government on how those costs will be funded. ”

by Kyodo, Jiji

source