Fukushima’a other big problem: A Million tons of radioactive water — Wired

” The tsunami-driven seawater that engulfed Japan’s Fukushima Daiichi nuclear plant has long since receded. But plant officials are still struggling to cope with another dangerous flood: the enormous amounts of radioactive water the crippled facility generates each day. More than 1 million tons of radiation-laced water is already being kept on-site in an ever-expanding forest of hundreds of hulking steel tanks—and so far, there’s no plan to deal with them.

The earthquake and tsunami that hammered Fukushima on March 11, 2011 triggered meltdowns in three of its six reactors. That left messes of intensely radioactive fuel somewhere loose in the reactor buildings—though no one knows exactly where. What is known, however, is that every day, as much as much as 150 tons of groundwater percolates into the reactors through cracks in their foundations, becoming contaminated with radioactive isotopes in the process.

To keep that water from leaking into the ground or the Pacific, Tepco, the giant utility that owns the plant, pumps it out and runs it through a massive filtering system housed in a building the size of a small aircraft hangar. Inside are arrays of seven-foot tall stainless steel tubes, filled with sand grain-like particles that perform a process called ion exchange. The particles grab on to ions of cesium, strontium, and other dangerous isotopes in the water, making room for them by spitting out sodium. The highly toxic sludge created as a byproduct is stored elsewhere on the site in thousands of sealed canisters.

This technology has improved since the catastrophe. The first filtering systems, installed just weeks after the disaster by California-based Kurion Inc. (which has since been bought by Veolia, a French resource management company), only caught cesium, a strong gamma radiation emitter that makes it the most dangerous of the isotopes in the water. The tubes in those arrays were filled with highly modified grains of naturally occurring volcanic minerals called zeolites. By 2013, the company developed entirely artificial particles—a form of titano silicate—that also grab strontium.

The filters, however, don’t catch tritium, a radioactive isotope of hydrogen. That’s a much trickier task. Cesium and strontium atoms go into solution with the water, like sugar in tea; but tritium can bond with oxygen just like regular hydrogen, rendering the water molecules themselves radioactive. “It’s one thing to separate cesium from water, but how do you separate water from water?” asks John Raymont, Kurion’s founder and now president of Veolia’s nuclear solutions group. The company claims to have developed a system that can do the job, but Tepco has so far balked at the multi-billion dollar cost.

So for now, the tritiated water is pumped into a steadily growing collection of tanks. There are already hundreds of them, and Tepco has to start building a new one every four days.

Tepco has at least reduced the water’s inflow. As much as 400 tons per day was gushing in just a couple of years ago. In an effort to keep the groundwater from getting in, Tepco has built a network of pumps, and in 2016 installed an underground “ice wall”—a $300 million subterranean fence of 30-yard-long rods through which tons of sub-zero brine is pumped, freezing the surrounding earth. All of which helps, but hasn’t solved the problem.

Tritium is far less dangerous than cesium—it emits a weaker, lower-energy form of radiation. Still, all that tritiated water can’t just be stored indefinitely. “Some of those tanks and pipes will eventually fail. It’s inevitable,” says Dale Klein, a former head of the US Nuclear Regulatory Commission who has been consulting with Tepco since the early days following the disaster. (In fact, hundreds of tons of water leaked out of the tanks in 2013 and 2014, sparking an international outcry. Tepco has since improved their design.)

Klein, among others, believes that the concentrations of tritium are low enough that the water can safely be released into the sea. “They should dilute and dispose of it,” he says. “It would be better to have a controlled release than an accidental one.”

But the notion of dumping tons of radioactive water into the ocean is understandably a tough sell. Whatever faith the Japanese public had left in Tepco took a further beating in the first couple of years after the meltdowns, when several investigations forced the company to acknowledge they had underreported the amount of radiation released during and after the disaster. Japan’s fishing industry raises a ruckus whenever the idea of dumping the tritiated water is broached; they already have to contend with import restrictions imposed by neighboring countries worried about eating contaminated fish. Japan’s neighbors including China, Korea, and Taiwan have also objected.

For now, all Tepco can do is keep building tanks, and hope that someone comes up with a solution before they run out of room—or the next earthquake hits. “

by Vince Beiser, Wired

source with internal links and photo

Advertisements

Fukushima nuclear plant: Tsunami wall could have avoided disaster but boss scrapped the plan, employee testifies — Newsweek

” A worker for the plant involved the 2011 Fukushima nuclear disaster said in a Japanese court Wednesday that his former boss was warned that a massive tsunami could strike the site, but delayed measures to build a protective wall to prevent it.

An unnamed employee of the Tokyo Electric Power Company (TEPCO) that owns the ruined Fukushima Daiichi or No.1, Nuclear Power Plant testified during a trial this week that a 2008 safety test showed an earthquake could cause a tsunami as high as 52 feet capable of pounding the coastal facility, according to The Asahi Shimbun. The company was initially set to build a seawall, but the employee told the court that former TEPCO Vice President Sakae Muto suddenly dismissed the idea.

The potentially catastrophic scenario was brought up again during a meeting on March 7, 2011, compelling shocked regulators to again recommend a wall to shield the facility, The Japan Times reported. But it was too late already: A magnitude 9.0 earthquake and tsunami struck only four days later on March 11, 2011, leaving up to 18,500 people dead or missing and destroying the facility.

Three out of the six nuclear reactors at the Fukushima No.1 plant suffered devastating meltdowns. Muto, along with former TEPCO Chairman Tsunehisa Katsumata and former TEPCO Vice President Ichiro Takekuro were indicted in February 2016 and are facing trial for suspected professional negligence resulting in death or injury after the worst nuclear disaster since the Chernobyl incident in 1986.

The multi-billion dollar effort to recover the site is far past schedule and over budget, but the TEPCO has claimed some recent successes. Six years after the disaster, the melted nuclear fuel was finally founded at the bottom of the partially submerged reactors. The site was so radioactive, even the robots previously sent it could not traverse the deadly core.

Efforts to retrieve the fuel, however, have been hampered as the $324 million ice wall that penetrated 100 feet into the earth failed to stop groundwater from leaking into the site, as Reuters reported last month. In fact, the amount of groundwater seeping into the facility may have increased since the highly-anticipated ice wall was installed last August, amounting to the latest setback in a cleanup process already beset by seemingly endless complications and miscalculations.

Removing this water adds to an already growing storage crisis on the site. TEPCO deliberately added water to cool off the plant’s damaged reactors. After coming in contact with the plant, the coolant water and groundwater became tainted with a substance known as tritium, a byproduct of the nuclear process notoriously difficult to filter out of water. TEPCO has accumulated over 1 million tons of this tritium-laced water in 650 giant tanks, according to The Japan Times, and is urging the government to let the company begin dumping it into the ocean.

Some locals have protested this, however. While tritium was a natural byproduct of the nuclear process that experts have described as harmless in smaller doses and was dumped into oceans worldwide, Fukushima activists and fishermen have argued that dumping tritium, even in small quantities, would further hurt the reputation of the region, still synonymous with nuclear disaster. Nearby China and South Korea are among the nations that still restrict the import of certain products from Japan.

Lingering concerns about radiation have also reportedly kept many of the 160,000 residents that fled Fukushima from returning. Life, nevertheless, has begun to return to some parts of the crisis-stricken prefecture. The town of Okuma announced Wednesday that some citizens would be allowed to stay overnight starting next week for the first time since the March 2011 disaster, Japanese daily The Mainichi Shimbun said. ”

by Tom O’Connor, Newsweek

source with image and internal links

Experts: Fukushima must do more to reduce radioactive water — U.S. News

Here is a good article written by Mari Yamaguchi that explains the state of contaminated water at the Fukushima Daiichi plant. Experts say that the ice wall that was built to keep groundwater from coming into the power plant and becoming contaminated with radioactivity is only half effective. A conventional drainage system also collects water from wells dug around the plant and pumps it out before it becomes contaminated. This water is stored in about 1,000 storage tanks near the facility. Read more about the construction, operation and maintenance costs that are coming out of the taxpayer’s pocket.

source

Japan still at a stalemate as Fukushima’s radioactive water grows by 150 tons a day — The Japan Times

” More than six years after a tsunami overwhelmed the Fukushima No. 1 nuclear power plant, Japan has yet to reach consensus on what to do with a million tons of radioactive water, stored on site in around 900 large and densely packed tanks that could spill should another major earthquake or tsunami strike.

The stalemate is rooted in a fundamental conflict between science and human nature.

Experts advising the government have urged a gradual release to the Pacific Ocean. Treatment has removed all the radioactive elements except tritium, which they say is safe in small amounts. Conversely, if the tanks break, their contents could slosh out in an uncontrolled way.

Local fishermen are balking. The water, no matter how clean, has a dirty image for consumers, they say. Despite repeated tests showing most types of fish caught off Fukushima are safe to eat, diners remain hesitant. The fishermen fear any release would sound the death knell for their nascent and still fragile recovery.

“People would shun Fukushima fish again as soon as the water is released,” said Fumio Haga, a drag-net fisherman from Iwaki, a city about 50 kilometers (30 miles) down the coast from the nuclear plant.

And so the tanks remain.

Fall is high season for saury and flounder, among Fukushima’s signature fish. It was once a busy time of year when coastal fishermen were out every morning.

Then came March 11, 2011. A magnitude 9 offshore earthquake triggered a tsunami that killed more than 18,000 people along the coast. The quake and massive flooding knocked out power for the cooling systems at the Fukushima nuclear plant. Three of the six reactors had partial meltdowns. Radiation spewed into the air, and highly contaminated water ran into the Pacific.

Today, only about half of the region’s 1,000 fishermen go out, and just twice a week because of reduced demand. They participate in a fish testing program.

Lab technicians mince fish samples at Onahama port in Iwaki, pack them in a cup for inspection and record details such as who caught the fish and where. Packaged fish sold at supermarkets carry official “safe” stickers.

Only three kinds of fish passed the test when the experiment began in mid-2012, 15 months after the tsunami. Over time, that number has increased to about 100.

The fish meet what is believed to be the world’s most stringent requirement: less than half the radioactive cesium level allowed under Japan’s national standard and one-twelfth of the U.S. or EU limit, said Yoshiharu Nemoto, a senior researcher at the Onahama testing station.

That message isn’t reaching consumers. A survey by the Consumer Affairs Agency in October found that nearly half of Japanese weren’t aware of the tests, and that consumers are more likely to focus on alarming information about possible health impacts in extreme cases, rather than facts about radiation and safety standards.

Fewer Japanese consumers shun fish and other foods from Fukushima than before, but 1 in 5 still do, according to the survey. The coastal catch of 2,000 tons last year was 8 percent of pre-disaster levels. The deep-sea catch was half of what it used to be, though scientists say there is no contamination risk that far out.

Naoya Sekiya, a University of Tokyo expert on disaster information and social psychology, said that the water from the nuclear plant shouldn’t be released until people are well-informed about the basic facts and psychologically ready.

“A release only based on scientific safety, without addressing the public’s concerns, cannot be tolerated in a democratic society,” he said. “A release when people are unprepared would only make things worse.”

He and consumer advocacy group representative Kikuko Tatsumi sit on a government expert panel that has been wrestling with the social impact of a release and what to do with the water for more than a year, with no sign of resolution.

Tatsumi said the stalemate may be further fueling public misconception: Many people believe the water is stored because it’s not safe to release, and they think Fukushima fish is not available because it’s not safe to eat.

The amount of radioactive water at Fukushima is still growing, by 150 tons a day.

The reactors are damaged beyond repair, but cooling water must be constantly pumped in to keep them from overheating. That water picks up radioactivity before leaking out of the damaged containment chambers and collecting in the basements.

There, the volume of contaminated water grows, because it mixes with groundwater that has seeped in through cracks in the reactor buildings. After treatment, 210 tons is reused as cooling water, and the remaining 150 tons is sent to tank storage. During heavy rains, the groundwater inflow increases significantly, adding to the volume.

The water is a costly headache for Tokyo Electric Power Company Holdings Inc., the utility that owns the plant. To reduce the flow, it has dug dozens of wells to pump out groundwater before it reaches the reactor buildings and built an underground “ice wall” of questionable effectiveness by partially freezing the ground around the reactors.

Another government panel recommended last year that the utility, known as Tepco, dilute the water up to about 50 times and release about 400 tons daily to the sea — a process that would take almost a decade to complete. Experts note that the release of tritiated water is allowed at other nuclear plants.

Tritiated water from the 1979 Three Mile Island accident in the United States was evaporated, but the amount was much smaller, and still required 10 years of preparation and three more years to complete.

A new chairman at Tepco, Takashi Kawamura, caused an uproar in the fishing community in April when he expressed support for moving ahead with the release of the water.

The company quickly backpedaled, and now says it has no plans for an immediate release and can keep storing water through 2020. Tepco says the decision should be made by the government, because the public doesn’t trust the utility.

“Our recovery effort up until now would immediately collapse to zero if the water is released,” Iwaki abalone farmer Yuichi Manome said.

Some experts have proposed moving the tanks to an intermediate storage area, or delaying the release until at least 2023, when half the tritium that was present at the time of the disaster will have disappeared naturally. ”

by Mari Yamaguchi, The Japan Times

source

Botched gauge settings might have contaminated Fukushima groundwater from April onward: Tepco — The Japan Times

” The discovery of falsely configured monitoring equipment at the stricken Fukushima No. 1 nuclear power plant means the groundwater flowing underneath it might have gotten contaminated from April onward, Tokyo Electric said Friday.

The utility said incorrect gauge settings were used to measure groundwater levels in six of the wells near reactors 1 and 4. This resulted in groundwater readings about 70 cm higher than reality, which means the beleaguered power utility has been mismanaging the groundwater there for months.

To prevent tainted water from leaking from the plant, Tokyo Electric Power Company Holdings Inc. installed water gauges so it could keep the groundwater levels in the wells a meter higher than the contaminated water in the buildings.

Tepco adjusts the amount of water in wells called subdrains around the buildings to keep the groundwater higher than the tainted water inside them, which prevents it from flowing out. If the groundwater levels sink below the level of the radioactive water, it might leak out.

On Friday, Tepco said the estimated groundwater level in one of the six subdrain wells close to reactor 1 fell below the level in the reactor building at least eight times during the five-day period to May 21 because the gauges were set incorrectly.

Groundwater levels were 2 mm to 19 mm lower than the level in the buildings, Tepco said, adding that it does not know precisely how long each of these problematic situations lasted because water level data is collected by the hour.

Tepco said groundwater levels in five other wells affected by the incorrect settings did not fall below the levels in the nearby reactor buildings.

All six are in the area surrounded by an underground ice wall designed to prevent groundwater leakage.

According to Tepco, the incorrect settings date as far back as April 19. The earliest error affected the gauge in a well where groundwater fell to hazardous levels.

In the world’s worst nuclear disaster since Chernobyl, reactors 1, 2 and 3 at the plant experienced core meltdowns and reactors 1, 3 and 4 were severely damaged by hydrogen explosions following a massive offshore earthquake that spawned large tsunami in March 2011. ”

by Jiji, Kyodo via The Japan Times

source

Work to finish ice wall at crippled plant to begin — NHK World

” The operator of the crippled Fukushima Daiichi nuclear plant will begin the final phase of creating an underground ice wall on Tuesday.

Tokyo Electric Power Company started the work 17 months ago, with the aim of preventing groundwater from entering reactor buildings and getting contaminated with radioactive substances.

The 1.5-kilometer ice barrier is deemed a key step to curb the buildup of tainted water at the plant.

The soil is frozen by sending liquid at minus 30 degrees Celsius into pipes buried around the buildings. But the utility has left a 7-meter section unfrozen, fearing the sudden fall in groundwater levels around the buildings.

There were concerns that the difference of water levels in and outside the reactor buildings would cause tainted water inside to leak out.

But last Tuesday, the Nuclear Regulation Authority said safety measures are ready and gave its approval to freeze of the final section.

Officials of the utility say they will carefully monitor the freezing process of the remaining section.

They say it may take longer to fully freeze than other areas, because the flow of groundwater has been concentrated in that section.

The officials expect that the wall, when completed, will reduce the inflow of groundwater to the buildings from 140 tons a day to less than 100 tons. ”

by NHK World

source