Fukushima nuclear plant: Tsunami wall could have avoided disaster but boss scrapped the plan, employee testifies — Newsweek

” A worker for the plant involved the 2011 Fukushima nuclear disaster said in a Japanese court Wednesday that his former boss was warned that a massive tsunami could strike the site, but delayed measures to build a protective wall to prevent it.

An unnamed employee of the Tokyo Electric Power Company (TEPCO) that owns the ruined Fukushima Daiichi or No.1, Nuclear Power Plant testified during a trial this week that a 2008 safety test showed an earthquake could cause a tsunami as high as 52 feet capable of pounding the coastal facility, according to The Asahi Shimbun. The company was initially set to build a seawall, but the employee told the court that former TEPCO Vice President Sakae Muto suddenly dismissed the idea.

The potentially catastrophic scenario was brought up again during a meeting on March 7, 2011, compelling shocked regulators to again recommend a wall to shield the facility, The Japan Times reported. But it was too late already: A magnitude 9.0 earthquake and tsunami struck only four days later on March 11, 2011, leaving up to 18,500 people dead or missing and destroying the facility.

Three out of the six nuclear reactors at the Fukushima No.1 plant suffered devastating meltdowns. Muto, along with former TEPCO Chairman Tsunehisa Katsumata and former TEPCO Vice President Ichiro Takekuro were indicted in February 2016 and are facing trial for suspected professional negligence resulting in death or injury after the worst nuclear disaster since the Chernobyl incident in 1986.

The multi-billion dollar effort to recover the site is far past schedule and over budget, but the TEPCO has claimed some recent successes. Six years after the disaster, the melted nuclear fuel was finally founded at the bottom of the partially submerged reactors. The site was so radioactive, even the robots previously sent it could not traverse the deadly core.

Efforts to retrieve the fuel, however, have been hampered as the $324 million ice wall that penetrated 100 feet into the earth failed to stop groundwater from leaking into the site, as Reuters reported last month. In fact, the amount of groundwater seeping into the facility may have increased since the highly-anticipated ice wall was installed last August, amounting to the latest setback in a cleanup process already beset by seemingly endless complications and miscalculations.

Removing this water adds to an already growing storage crisis on the site. TEPCO deliberately added water to cool off the plant’s damaged reactors. After coming in contact with the plant, the coolant water and groundwater became tainted with a substance known as tritium, a byproduct of the nuclear process notoriously difficult to filter out of water. TEPCO has accumulated over 1 million tons of this tritium-laced water in 650 giant tanks, according to The Japan Times, and is urging the government to let the company begin dumping it into the ocean.

Some locals have protested this, however. While tritium was a natural byproduct of the nuclear process that experts have described as harmless in smaller doses and was dumped into oceans worldwide, Fukushima activists and fishermen have argued that dumping tritium, even in small quantities, would further hurt the reputation of the region, still synonymous with nuclear disaster. Nearby China and South Korea are among the nations that still restrict the import of certain products from Japan.

Lingering concerns about radiation have also reportedly kept many of the 160,000 residents that fled Fukushima from returning. Life, nevertheless, has begun to return to some parts of the crisis-stricken prefecture. The town of Okuma announced Wednesday that some citizens would be allowed to stay overnight starting next week for the first time since the March 2011 disaster, Japanese daily The Mainichi Shimbun said. ”

by Tom O’Connor, Newsweek

source with image and internal links

Advertisements

How Fukushima turned a nuclear advocate into an antinuclear champion — The Christian Science Monitor

” Trading “le nucléaire” for renewables is a tough sell in the planet’s most nuclear-dependent nation.

Naoto Kan came to France anyway. The once pro-nuclear former prime minister who led Japan through the Fukushima nuclear disaster recently made a swing through one of France’s most nuclearized areas – the tip of Normandy – giving struggling environmentalists a rare boost.

An improbable activist in his conservative dark suit and tie, Mr. Kan came to explain his 180-degree switch from pro-nuclear to antinuclear crusader, and urge people to go for renewables instead.

“I came here because I am fiercely opposed to nuclear power, and I want to show my solidarity with people fighting it here,” Kan politely told a small crowd of activists near Flamanville’s controversial EPR nuclear reactor. “Before Fukushima I was pronuclear,” he said, laying flowers on a homemade memorial to unknown radiation victims whose slogan, “aux irradiés inconnus,” mimics monuments to unknown soldiers dotting France. “But with Fukushima, we almost had to evacuate millions of people, and I realized we had to stop nuclear power – in France, Japan, the world – and turn to renewables as fast as possible.”

Kan’s unusual visit buoyed “écolos” in rural Normandy, where the nuclear industry employs thousands and its critics feel marginalized. “We’re used to criticism, but his message is universal, so he gives the opposition credibility,” said retired schoolteacher and veteran activist Paulette Anger, secretary of Crilan, one of two small anti-nuclear groups hosting Kan.

How to produce electricity safely is a quandary many countries have grappled with since the Fukushima Daiichi disaster – the planet’s second major nuclear accident after the 1986 Chernobyl catastrophe. It’s a question Kan never thought he’d face when he became prime minister of Japan on June 8, 2010.

Nine months later, Japan’s worst nuclear accident confronted him with its greatest crisis since World War II.

Kan was a science buff who thought nuclear power was needed in a plugged-in world. After majoring in applied physics at the Tokyo Institute of Technology, he was drawn to ’60s activism, and then entered politics.

But on March 11, 2011, a massive category-9 earthquake and tsunami hit Japan’s east coast, killing thousands. Huge waves swamped the Fukushima Daiichi nuclear complex, knocking out electric power to its six reactors and seven spent fuel pools.

Kan followed with dread as the power loss halted cooling to the nuclear fuel rods in the reactors and spent fuel pools. The failure of all backup fixes inexorably led to three meltdowns and several hydrogen explosions, spewing long-lived radioactive poisons across the countryside.

“Human error is inevitable,” Kan told a rapt crowd of 400, packed into a community center near Flamanville’s village church. Because a nuclear accident robs people of their lives and ancestral lands, the risk is too high, Kan said in guttural Japanese, pausing for his translator to catch up. “So I’m trying to use this terrible experience to convince as many people as I can to get out of nuclear power.”

For his antinuclear hosts, Kan was the biggest guest star since oceanographer Jacques-Yves Cousteau came to fight the Flamanville reactors decades ago.

“It’s remarkable to have the former prime minister here,” said retired schoolteacher and antinuclear veteran Didier Anger, president of Crilan and a spokesman for Can-Ouest, the two antinuclear groups co-hosting Kan. “When someone changes their mind as Mr. Naoto Kan has, bravo!” he said to resounding applause.

A fictionalized film of the disaster’s first days accompanied Kan. “Le Couvercle du Soleil” (“The Seal of the Sun”), produced by Tomiyoshi Tachibana, shows the besieged prime minister struggling to understand the problem so he can react without causing panic. The secretive fictional power company lies and stalls. A chain of errors leads to disaster. In a key turning point, radiation levels in the doomed plants get so high the power company wants to leave. In what investigators conclude “saves Japan,” Kan orders them to stay.

An earthquake and tsunami are catastrophes that end, Kan explains in his book, “My Nuclear Nightmare.” But leaving an unmanageable nuclear reactor alone only lets things get worse.

The disaster released massive amounts of radiation, created 160,000 refugees, drove farmers to suicide, and rendered a beautiful part of Japan uninhabitable for years. After a no-confidence vote, Kan resigned, but not before insisting on legislation easing Japan’s path to renewables.

Chernobyl got explained away as an accident in an old reactor in an undeveloped nation. For Kan, Fukushima underscored the false assumption that nuclear disaster can’t happen in a high-tech country. By luck, he didn’t have to order Tokyo and 50 million people evacuated for 30 to 50 years, he said.

Now, Kan travels the world as a guest of antinuclear groups, warning about the powerful collection of special interests promoting nuclear power.

“Those who benefit from nuclear power are not the ones who will pay,” he warned, noting that the half-life of plutonium is 24,000 years. Fukushima, he stressed, is not over.

After speaking to the National Assembly in Paris and the European Parliament in Strasbourg, Kan toured Normandy’s “nuclear peninsula.” Activists took Kan along the rugged coast to view Flamanville’s controversial EPR reactor from a cliff. They drove him past France’s oldest nuclear waste dump to the huge La Hague nuclear waste reprocessing plant, home of Europe’s largest store of nuclear materials, tons of plutonium, and thousands of tons of nuclear waste. A citizen scientist from the independent radiation lab ACRO showed Kan two contaminated streams amid bucolic cow pastures behind the nuclear waste plant, including one where authorities last year confirmed plutonium in sediments. Kan admired the grand view at the peninsula’s jagged tip, where the waste plant’s discharge pipe routinely pours thousands of gallons of radioactive wastewater out to sea with government permission.

After the disaster, Japan shut down its 54 nuclear reactors, 12 of them permanently. Five restarted, but efforts to restart more are stalled by public opposition. Kan wants them all shut down.

Fukushima had a profound effect on global nuclear programs, said Mycle Schneider, a Paris-based independent energy and nuclear policy analyst and lead author of the World Nuclear Industry Status Report. “It accelerated its decline in Europe, the US, globally – and significantly slowed down expansion in China.”

Still, France’s 58 reactors produce almost three-quarters of its electricity.

Flamanville’s Mayor Patrick Fauchon echoed the French industry view that its plants are safe. “I think it’s important that he share his experience,” he said of Kan. “But it’s his fight.” As for a nuclear accident here: “I’m not particularly worried.”

Meanwhile, Kan’s visit left veteran critics of le nucléaire feeling buoyed.

“It probably won’t change opinions on the pronuclear side,” Ms. Anger said. “But because he lived through certain things and was once pronuclear, it made them think. His visit enormously enhanced our credibility. It was a big event.” ”

by contributor Clare Kittredge, The Christian Science Monitor

source with internal links

Arbitration ends for Fukushima damages claim — NHK World

” A government body has given up trying to arbitrate between Tokyo Electric Power Company and more than 15,000 people seeking higher monthly compensation for the 2011 Fukushima nuclear disaster.

It was the largest arbitration case involving the nuclear accident.

Namie Town in Fukushima Prefecture filed a petition with the Nuclear Damage Compensation Dispute Resolution Center in 2013, on behalf of residents who were forced to evacuate after the disaster.

More than 15,000, or about 70 percent of the town’s population, signed the petition to demand more compensation from TEPCO, the operator of the damaged Fukushima Daiichi nuclear plant.

TEPCO’s monthly payment for each Namie resident was calculated at 100,000 yen, or about 934 dollars.
In March 2014, the dispute resolution center offered an arbitration plan that called for raising this amount by 50 percent. The town agreed to accept it.

But TEPCO maintains that increasing the compensation would have a significant impact on other evacuees. The center has repeatedly asked the utility to accept the plan.

On Friday, the dispute resolution center told the town of its decision to end the arbitration process.

The claimants are expected to consider whether to file a lawsuit against TEPCO. The town says more than 800 of the claimants are now dead. ”

by NHK World

source

Is Fukushima doomed to become a dumping ground for toxic waste? — The Guardian

” This month, seven years after the 2011 Fukushima Daiichi reactor meltdowns and explosions that blanketed hundreds of square kilometres of northeastern Japan with radioactive debris, government officials and politicians spoke in hopeful terms about Fukushima’s prosperous future. Nevertheless, perhaps the single most important element of Fukushima’s future remains unspoken: the exclusion zone seems destined to host a repository for Japan’s most hazardous nuclear waste.

No Japanese government official will admit this, at least not publicly. A secure repository for nuclear waste has remained a long-elusive goal on the archipelago. But, given that Japan possesses approximately 17,000 tonnes of spent fuel from nuclear power operations, such a development is vital. Most spent fuel rods are still stored precariously above ground, in pools, in a highly earthquake-prone nation.

Japanese officialdom relentlessly emphasises positive messages regarding Fukushima’s short- and medium-term future, prioritizing economic development and the gradual return of skeptical evacuees to their newly “remediated” communities. Yet the return rate for the least hard-hit communities is only about 15%. Government proclamations regarding revitalisation of the area in and around the exclusion zone intone about jobs but seem geared ominously toward a future with relatively few humans.

The Fukushima prefecture government is currently promoting a plan, dubbed The Innovation Coast, that would transform the unwelcoming region into a thriving sweep of high-tech innovation. Much of the development would be directed towards a “robot-related industrial cluster” and experimental zones like a robot test field.

The test field would develop robots tailored for disaster response and for other purposes on a course simulating a wide range of hurdles and challenges already well represented in Fukushima itself. Large water tanks would contain an array of underwater hazards to navigate, mirroring the wreckage-strewn waters beneath the Fukushima Daiichi plant, where a number of meltdown-remediating underwater robots have met a premature demise in recent years.

Elsewhere on the robot test field, dilapidated buildings and other ruins would serve as a proving ground for land-based disaster-response robots, which must navigate twisted steel rods, broken concrete and other rubble. Engineered runways and surrounding radiation-hit areas would serve as prime territory for testing parlous aerial drones for a range of purposes in various weather conditions – which would be difficult or impossible to achieve elsewhere in relatively densely populated Japan.

The planned site for the test field would link with a secluded test area about 13km south along the coast to coordinate test flights over the exclusion zone’s more or less posthuman terrain.

Naturally, unlike Fukushima’s human residents, robots would be oblivious to the elevated radiation levels found outside the Fukushima Daiichi facility. In addition, prefectural officials have suggested that the exclusion zone environs could play host to a range of other services that don’t require much human intervention, such as long-term archive facilities.

Proud long-time residents of Fukushima, for their part, see all this development as a continued “colonisation” of the home prefecture by Tokyo – a well-worn pattern of outsiders using the zone for their own purposes, as were the utility representatives and officials who built the ill-fated plant in the first place.

Years of colossal decontamination measures have scraped irradiated material from seemingly every forest, park, farm, roadside, and school ground. This 16 million cubic metres of radioactive soil is now stored in provisional sites in and around the exclusion zone, waiting to be moved to an interim storage facility that has hardly been started and for which nearly half of the land has not yet even been leased.

The state has promised to remove all the contaminated soil from Fukushima after 30 years, and government officials have been scrupulous in insisting that this will be the case – for soil. Yet in a nation with about 17,000 tonnes of highly radioactive spent fuel rods and no willing candidates for secure repositories, it is only a matter of time before it becomes possible for politicians to publicly back the idea of transforming the area around Fukushima Daiichi into a secure repository.

Government officials, including those tasked with nuclear waste storage, describe the quintessentially Japanese strategy of saki-okuri, or calculated postponement, in the context of nuclear waste storage. Such perception management is a subtle business, but by quietly and unrelentingly pushing back the day of reckoning – slowly changing the terms of debate – the broadly distasteful prospect of storing Japan’s most dangerous material in its most tragically maltreated region would become gradually less intolerable to Japanese sensibilities.

The expanse of Fukushima in and around the exclusion zone represents an already contaminated area with, since 2011, far fewer residents to protest against such plans. Such a rare opportunity for relatively unopposed intervention in a struggling area will surely prove irresistible to the nuclear lobby.

Fukushima has been marginalised, disenfranchised, and outmanoeuvred for decades. After all, the electricity from Fukushima Daiichi went straight to the capital, not to Fukushima itself, which bore the risks. Since 2011, Fukushima has been saddled with the staggering burden of the meltdown’s aftermath that, despite government PR, will encumber and stigmatise its citizens for at least several decades. ”

by Peter Wynn Kirby, The Guardian

source

Clearing the radioactive rubble heap that was Fukushima Daiichi, 7 years on — Scientific American

” Seven years after one of the largest earthquakes on record unleashed a massive tsunami and triggered a meltdown at Japan’s Fukushima Daiichi nuclear power plant, officials say they are at last getting a handle on the mammoth task of cleaning the site before it is ultimately dismantled. But the process is still expected to be a long, expensive slog, requiring as-yet untried feats of engineering—and not all the details have yet been worked out.

When the disaster knocked out off- and on-site power supplies on March 11, 2011, three of the cooling systems for the plant’s four reactor units were disabled. This caused the nuclear fuel inside to overheat, leading to a meltdown and hydrogen explosions that spewed out radiation. The plant’s operator, Tokyo Electric Power Co. (TEPCO), responded by cooling the reactors with water, which continues today. Meanwhile thousands of people living in the surrounding area were evacuated and Japan’s other nuclear plants were temporarily shut down.

In the years since the disaster and the immediate effort to stanch the release of radioactive material, officials have been working out how to decontaminate the site without unleashing more radiation into the environment. It will take a complex engineering effort to deal with thousands of fuel rods, along with the mangled debris of the reactors and the water used to cool them. Despite setbacks, that effort is now moving forward in earnest, officials say. “We are still conducting studies on the location of the molten fuel, but despite this we have made the judgment that the units are stable,” says Naohiro Masuda, TEPCO’s chief decommissioning officer for Daiichi.

Completely cleaning up and taking apart the plant could take a generation or more, and comes with a hefty price tag. In 2016 the government increased its cost estimate to about $75.7 billion, part of the overall Fukushima disaster price tag of $202.5 billion. The Japan Center for Economic Research, a private think tank, said the cleanup costs could mount to some $470 billion to $660 billion, however.

Under a government roadmap, TEPCO hopes to finish the job in 30 to 40 years. But some experts say even that could be an underestimate. “In general, estimates of work involving decontamination and disposal of nuclear materials are underestimated by decades,” says Rod Ewing, a professor of nuclear security and geological sciences at Stanford University. “I think that we have to expect that the job will extend beyond the estimated time.”

The considerable time and expense are due to the cleanup being a veritable hydra that involves unprecedented engineering. TEPCO and its many contractors will be focusing on several battlefronts.

Water is being deliberately circulated through each reactor every day to cool the fuel within—but the plant lies on a slope, and water from precipitation keeps flowing into the buildings as well. Workers built an elaborate scrubbing system that removes cesium, strontium and dozens of other radioactive particles from the water; some of it is recirculated into the reactors, and some goes into row upon row of giant tanks at the site. There’s about one million tons of water kept in 1,000 tanks and the volume grows by 100 tons a day, down from 400 tons four years ago.

To keep more water from seeping into the ground and being tainted, more than 90 percent of the site has been paved. A series of drains and underground barriers—including a $325-million* supposedly impermeable “wall” of frozen soil—was also constructed to keep water from flowing into the reactors and the ocean. These have not worked as well as expected, though, especially during typhoons when precipitation spikes, so groundwater continues to be contaminated.

Despite the fact contaminated water was dumped into the sea after the disaster, studies by Japanese and foreign labs have shown radioactive cesium in fish caught in the region has fallen and is now within Japan’s food safety limits. TEPCO will not say when it will decide what to do with all the stored water, because dumping it in the ocean again would invite censure at home and abroad—but there are worries that another powerful quake could cause it to slosh out of the tanks.

Fuel Mop-up

A second major issue at Fukushima is how to handle the fuel¾the melted uranium cores as well as spent and unused fuel rods stored at the reactors. Using robotic probes and 3-D imaging with muons (a type of subatomic particle), workers have found pebbly deposits and debris at various areas inside the primary containment vessels in the three of the plant’s reactor units. These highly radioactive remains are thought to be melted fuel as well as supporting structures. TEPCO has not yet worked out how it can remove the remains, but it wants to start the job in 2021. There are few precedents for the task. Lake Barrett—director of the Three Mile Island nuclear plant during its decommissioning after a partial meltdown at the Middletown, Pa., facility in 1979—says TEPCO will use robots to remotely dig out the melted fuel and store it in canisters on-site before shipping to its final disposal spot. “This is similar to what we did at Three Mile Island, just much larger and with much more sophisticated engineering because their damage is greater than ours was,” Barrett says. “So although the work is technically much more challenging than ours was, Japan has excellent technological capabilities, and worldwide robotic technology has advanced tremendously in the last 30-plus years.”

Shaun Burnie, senior nuclear specialist with Greenpeace Germany, doubts the ambitious cleanup effort can be completed in the time cited, and questions whether the radioactivity can be completely contained. Until TEPCO can verify the conditions of the molten fuel, he says, “there can be no confirmation of what impact and damage the material has had” on the various components of the reactors—and therefore how radiation might leak into the environment in the future.

Although the utility managed to safely remove all 1,533 fuel bundles from the plant’s unit No. 4 reactor by December 2014, it still has to do the same for the hundreds of rods stored at the other three units. This involves clearing rubble, installing shields, dismantling the building roofs, and setting up platforms and special rooftop equipment to remove the rods. Last month a 55-ton dome roof was installed on unit No. 3 to facilitate the safe removal of the 533 fuel bundles that remain in a storage pool there. Whereas removal should begin at No. 3 sometime before April 2019, the fuel at units No. 1 and 2 will not be ready for transfer before 2023, according to TEPCO. And just where all the fuel and other radioactive solid debris on the site will be stored or disposed of long-term has yet to be decided; last month the site’s ninth solid waste storage building, with a capacity of about 61,000 cubic meters, went into operation.

As for what the site itself might look like decades from now, cleanup officials refuse to say. But they are quick to differentiate it from the sarcophagus-style containment of the 1986 Chernobyl catastrophe in the Soviet Union, in what is now Ukraine. Whereas the Chernobyl plant is sealed off and the surrounding area remains off-limits except for brief visits—leaving behind several ghost towns—Japanese officials want as many areas as possible around the Daiichi site to eventually be habitable again.

“To accelerate reconstruction and rebuilding of Fukushima as a region, and the lives of locals, the key is to reduce the mid- and long-term risk,” says Satoru Toyomoto, director for international issues at the Ministry of Economy, Trade and Industry’s Nuclear Accident Response Office. “In that regard, keeping debris on the premises without approval is not an option.” ”

by Tim Hornyak, Scientific American

source

**7 Years on, sailors exposed to Fukushima radiation seek their day in court — The Nation

At over 1,000 feet in length and weighing roughly 100,000 tons, the USS Ronald Reagan, a supercarrier in the United States Navy’s Seventh Fleet, is not typically thought of as a speedboat. But on a March day in 2011, the Nimitz-class ship was “hauling ass,” according to Petty Officer Third Class Lindsay Cooper.

Yet, when the Reagan got closer to its destination, just off the Sendai coast in northeastern Japan, it slowed considerably.

“You could hardly see the water,” Cooper told me. “All you saw was wood, trees, and boats. The ship stopped moving because there was so much debris.”

Even after more then 20 years in the service, Senior Chief Petty Officer Angel Torres said he had “never seen anything like it.” Torres, then 41, was conning, or navigating, the Reagan, and he describes the houses, trucks, and other flotsam around the carrier then as “an obstacle course.” One wrong turn, he worried, “could damage the ship and rip it open.”

The Reagan—along with two dozen other US Navy vessels—was part of Operation Tomodachi (Japanese for “friends”), the $90 million rescue, disaster-relief, and humanitarian mobilization to aid Japan in the immediate aftermath of the Tohoku earthquake and tsunami. For the sailors, the destruction was horrific—they told me of plucking bodies out of the water, of barely clothed survivors sleeping outside in sub-freezing weather, and of the seemingly endless wreckage—but the response was, at first, something they’d rehearsed.

“We treated it like a normal alert,” Cooper said. “We do drills for [these] scenarios. We went into that mode.” She and her approximately 3,200 shipmates moved food, water, and clothing from below to the flight deck where it could be put on helicopters and flown to the stricken residents.

But that sense of routine soon changed.

“All of the sudden, this big cloud engulfs us,” Torres said. “It wasn’t white smoke, like you would see from a steam leak,” he explained, but it also wasn’t like the black smoke he saw from the burning oil fields during his deployment in Kuwait in 1991. “It was like something I’d never seen before.”

Cooper was outside with her team, on the flight deck, prepping before the start of reconnaissance flights. She remembers it was cold and snowing when she felt, out of nowhere, a dense gust of warm air. “Almost immediately,” she said, “I felt like my nose was bleeding.”

But her nose wasn’t bleeding. Nor was there blood in her mouth, though Cooper was sure she tasted it. It felt, she said, “like I was licking aluminum foil.”

On March 11, 2011, at 2:46 pm local time, a 9.1 magnitude earthquake struck about 40 miles east of Japan’s Oshika Peninsula. The quake, the world’s fourth largest since 1900, devastated northern Honshu, Japan’s main island. At the Fukushima Daiichi nuclear power plant, located near the epicenter on the Pacific coast, the temblor damaged cooling systems and cut all electrical power to the station—power that is needed to keep water circulating around the active reactor cores and through pools holding decades of used but still highly radioactive nuclear fuel.

Several of the diesel-powered emergency generators at Daiichi kicked in to restart some of the safety systems, but less than an hour after the earthquake a 43-foot-high wave triggered by the quake swept over the sea wall, flooding the facility, including most of the generators, some of which had been positioned in the basement by the plant’s designer, General Electric.

Without any active cooling system, the heat in the reactor cores began to rise, boiling off the now-stagnant water and exposing the zirconium-clad uranium fuel rods to the air, which set off a series of superheated chemical reactions that split water into its elemental components. Hundreds of workers from Tokyo Electric Power Company (TEPCO), the station’s owner, struggled valiantly to find a way to circulate water, or at least relieve the pressure now building in the containment vessels of multiple reactors.

But the die was cast by the half-century-old design, with results repeatedly predicted for decades. The pressure continued to build, and over the course of the next two days, despite attempts to vent the containment structures, hydrogen explosions in three reactor buildings shot columns of highly radioactive gas and debris high into the air, spreading contamination that Japan still strains to clean up today.

And yet, despite this destruction and mayhem, proponents of nuclear power can be heard calling Fukushima a qualified success story. After all, despite a pair of massive natural disasters, acolytes say, no one died.

But many of the men and women of the Seventh Fleet would disagree. Now seven years removed from their relief mission, they’d tell you nine people have died as a result of the disaster at Fukushima Daiichi—and all of them are Americans.

For the sailors on the Reagan who have spoken about it, the reaction to encountering the cloud was bewilderment.

“At first, we were still dialed in,” said Torres. “We didn’t really have a chance to take in what we were experiencing. It was more like, ‘Well, this was different.’” But when he came off watch, sitting in his office, his perception changed to “What the hell just happened?”

Cooper described the same response: “We didn’t really know what was going on.” But after about 10 minutes, the crew was told to go below deck. It was there, as she was first learning about the problems at Fukushima Daiichi from the television, that Cooper recalls hearing an announcement on the public-address system indicating that the ship might have been hit by a plume of radiation from the nearby power plant. Shortly thereafter, Cooper said, the mission got “hectic—just kind of a crazy mess.”

Cooper said the crew hadn’t been warned in advance of any radiation risk, and she didn’t think the Reagan’s commanding officers had any foreknowledge either. But after radioactive contamination was suspected, those aboard the carrier say, everything changed.

Everyone who, like Cooper, had been on the flight deck was ordered to the fo’c’sle, the forward part of the ship, to “implement decontamination.” Cooper said she was instructed to “take anything you can off without getting naked.” She was told to write her name on her discarded clothes and boots—which she saw being piled in the middle of the room—then the crew was “wanded,” as Cooper described it, and given “white, plastic painters’ suits.”

For Torres, news of the radiation came through the rumor mill before he heard about it from his commanding officer. “It was minimal”—that was the impression Torres was given—still, the ship’s meteorologist tracked the wind and talked with Torres about taking the Reagan north of whatever it was they’d just passed through. But Torres was soon instructed to head back toward the coast. They had a HADR, a humanitarian assistance and disaster relief mission, to complete, and since they’d already been exposed—though they’d take precautions such as turning off the ship’s ventilation—they were going back to where they’d encountered the cloud.

It was likely about this time that Cooper recalled being woken up. “I was asleep in my rack when I had someone shake the living shit out of me.” She said she was told with great urgency that she needed to get to the hangar bay immediately to get a gas mask.

As Cooper stood in her pajamas and flip-flops, waiting for her mask and filter canisters, she looked around: “People were shoving wet rags in the cracks of the hangar bay door so none of the air would seep through, and they had rags stacked high along the entire wall,” she said. “It was crazy.”

“After that,” Cooper told me, “our ship went from ‘OK, we got this,’ to, like, ‘Oh, my God… we have no idea what we’re doing.’”

For Marine Lance Corporal Nathan Piekutowski—who arrived several days later with the USS Essex, a Wasp-class amphibious-assault ship—there seemed to be some advanced warning, and he said his preparation initially proceeded in an orderly fashion: “They had us shut all the portholes, all the windows, all the doors.” Piekutowski said they attempted to seal off the berthing area and stayed inside while they headed toward Japan. He was issued iodine tablets—which are used to block radioactive iodine, a common byproduct of uranium fission, from being absorbed by the thyroid gland—and fitted for an NBC (nuclear, biological, chemical) suit. He was also told not to drink water from the ship’s desalination system.

(Those I spoke with from the Reagan said they’d filled out consent forms for iodine tablets, but then never received the pills.)

Piekutowski wasn’t particularly troubled by these precautions. He knew they had plenty of bottled water on the ship, and, by the time they were near the coast, they were allowed back on deck with no special protection. “We were never once told to put on our NBC suits.” He had been issued big rubber over-boots and a gas mask along with the suit. “Those were in sealed plastic, like freezer bags,” he told me. “Mine stayed sealed till we got back to Hawaii.”

Torres, the senior petty officer, recounted, “One of the scariest things I’ve heard in my career was when the commanding officer came over the loudspeaker, and she said, ‘We’ve detected high levels of radiation in the drinking water; I’m securing all the water.’” That included making showers off limits.

Torres described a kind of panic as everyone rushed to the ship store to buy up cases of bottled water and Gatorade—“they didn’t want to dehydrate.”

Cooper also remembers the announcement on the water contamination: “We were like, ‘Are you fucking kidding me?’” She was among those trying to buy bottled water, but said it was quickly taken off the shelves—reserved for “humanitarian assistance.” Instead, Cooper said she was told she’d be issued rations of one bottle of water per day. For the long, hard shifts spent outside, Cooper said it was not nearly enough. She said an attitude set in among her shipmates, “We were like, ‘Fuck that, we’re already exposed—I’m gonna drink the water.’”

“We didn’t know how else to handle it,” she told me. “Like, you’re exposed on the flight deck, you’re exposed in the hangar bay, you’re exposed in berthing, you’re exposed walking, you’re exposed eating—congratulations, now you’re drinking it.”

“You’re working up top for like 18 hours, you’re busting your ass off—you need to hydrate.”

Cooper described her days during Operation Tomodachi starting before dawn and ending after 8 pm, with one 30-minute break for lunch, using the bathroom, and any personal business she could squeeze in. “They didn’t want you coming downstairs too many times because it just took too long,” she said, describing a lengthy and isolating decontamination process that was supposed to keep her and about 20 of her shipmates on the flight deck from spreading radioactive contamination to the rest of the carrier. “If you had to go to the bathroom, you were pretty much shit out of luck,” Cooper said of the time and hassle required to get to the women’s restrooms one floor below deck. “A lot of us females had to hold it in—it was miserable.”

The long hours, the short rations, and the unrelenting tableau of death and destruction drifting by the ship combined with the constant reminders that they were exposed to an unknown amount of radioactive contamination wore on the crew. They felt committed to the mission, and gratified to help, but the threat of radiation presented an aggravating obstacle. “Every time we got close to do humanitarian assistance,” said Cooper, “we’d need to dodge another plume.”

Even when operating normally, reactors like the ones designed and built by General Electric at Fukushima Daiichi produce highly radioactive isotopes of noble gases such as xenon and krypton, explained nuclear engineer Arnie Gundersen, who encountered the phenomenon when he worked at the Millstone Nuclear Power Plant in Waterford, Connecticut, in the 1970s. Millstone’s first reactor was a GE Mark 1 boiling-water reactor (BWR), the same model that failed at Fukushima. (Millstone 1 ceased operation in 1998; two other reactors of a slightly different design remain in use at the facility.)

But, as detailed by Gundersen—who is now one of the directors of Fairewinds Energy Education, a nuclear-industry watchdog—superheated “cracked fuel,” like that in the crippled Daiichi reactors, “immediately releases noble gases.”

“And that happens before the explosions” that destroyed the three reactor-containment buildings at Fukushima, he said. As Gundersen sets out the time line of the disaster, fuel began to crack within six hours of the earthquake, and TEPCO’s plant operators would have known it. “They had to know,” he told me, “because when the containment pressure started to go up, that was a clear indication that the fuel was failing.”

So, in those early hours, pressure built inside the Mark 1’s containment vessel to a point where it is thought to have broken the seal on the massive metal lid, and, as plant workers desperately tried to vent some of the gas and relieve that pressure, a radioactive plume formed over the coast.

And as the venting failed and the containments on three reactor units ruptured and exploded, a volume of radioactive xenon and krypton estimated to be about triple what was released in the 1986 Chernobyl disaster, wafted from Fukushima Daiichi over the next eight days. “Eighty percent of the radiation went out to sea,” said Gundersen. “That’s good for Japan, but it’s not good for the sailors, that’s for sure.”

Marco Kaltofen, president of Boston Chemical Data Corporation and an engineer with over 30 years of experience investigating environmental and workplace safety, noted that sensors in Richland, Washington, nearly 5,000 miles across the Pacific, saw a sixfold increase in radioactive noble gases in the days after the start of the Fukushima crisis. Chiba, the prefecture east of Tokyo, nearly 200 miles south of Fukushima, recorded radiation levels 400,000 times over background after the explosions.

Closer to the release, Kaltofen figured, would be orders of magnitude worse. “A bad place to be is a couple of miles offshore,” he said.

When told what the sailors experienced in the earliest days of the operation, Gundersen and Kaltofen differ slightly on their interpretations. Gundersen finds symptoms like the metallic taste consistent with the radiation exposure possible from a plume of otherwise odorless xenon or krypton. Kaltofen thinks that indicates exposure to some of the radioactive particulate matter—containing isotopes of cesium, strontium, iodine, and americium—that was sent into the air with the hydrogen explosions. But both believe it speaks to a notable degree of radiation exposure.

Cindy Folkers agreed. Folkers is the radiation-and-health specialist at the clean-energy advocacy group Beyond Nuclear, and when she hears the symptoms reported by the Tomodachi sailors, she hears the telltale signs of radiation exposure. And when told of what those relief workers experienced next, and the speed with which their symptoms manifested, she said she thinks the levels of exposure were higher than some have reported—or many would like to admit.

Just what the two large companies responsible for the design and operation of Fukushima Daiichi—TEPCO and GE—will admit is at the center of a pair of lawsuits currently moving through US courts. Or at least should be, if and when it gets in front of a jury.

“We’re still trying to get to the merits,” attorney John Edwards, the former US senator and Democratic vice-presidential nominee, told me, “because the merits of the case are so strong.” Edwards, along with attorneys Cate Edwards (his daughter) and Charles Bonner, represent what Bonner told me were now upward of 400 sailors who accuse the Japanese utility and the US industrial giant of gross negligence in the design, construction, maintenance, and operation of the Fukushima Daiichi nuclear power plant, and of deliberately obscuring the radiologic disaster that rapidly unfolded after the March 2011 earthquake and tsunami.

And if that were all there was to it, many who have examined the Fukushima disaster—including the Japanese government’s own investigation, Japan’s prime minister at the start of the crisis, Naoto Kan, and even TEPCO itself—would say the plaintiffs have a point.

Before the first of the Daiichi reactors was brought online (construction began in 1967, and operation commenced in 1971), there were already open concerns about its design and placement. Originally conceived in the 1950s, the General Electric BWR Mark 1 was thought by some of its own designers to have too small a containment structure to survive a prolonged LOOP—a loss of onsite power. The ability to adequately vent the containment was also called into question, as was the resilience of the containment vessel’s metal alloy. In 1976, three GE engineers who had worked on the Mark 1 quit to protest the manufacturer’s lack of urgency in addressing flaws they said would cause reactor containment to fail in a loss-of-cooling accident.

In readying the site for Fukushima Daiichi, TEPCO opted to cut down the natural 115-foot sea wall, to less than 33 feet, to reduce construction costs and make it easier to access seawater for cooling. The emergency cooling systems were also placed close to shore and did not use submersible pumps. That whole facility was placed behind what was originally only a 13-foot-high sea wall (later raised to nearly 19 feet), despite evidence that eight tsunamis of at least 40 feet had hit the area in the 70 years prior to the agency’s breaking ground on Daiichi. Many emergency generators were situated in the basement, and diesel-fuel tanks were placed on a flood plane, leaving them vulnerable to the massive wave that slammed the site in 2011.

Within two years of the containment breaches, Kan, by then the former prime minister, was telling experts and investigators, including nuclear engineer Gundersen, that TEPCO had withheld critical information about what was happening at Fukushima in the first hours and days of the crisis. In 2016, TEPCO was forced to admit it failed to publicly declare a meltdown at the three crippled reactors, even though its internal guidelines indicated from early on that meltdowns were indeed occurring. And just last spring, a Japanese court found TEPCO (along with the government) guilty of negligence, not just in handling the disaster but also, in the years prior, in declaring the events at Daiichi “predictable” and preventable.

But none of that has been heard by a US jury. For over four years, a number of sailors, Marines, and other military-relief personnel have waited for their day in court while their attorneys wade through motions from the defendants, GE, and TEPCO, challenging venue and jurisdiction.

In an e-mailed statement, General Electric, while expressing “heartfelt sympathy for those affected by the earthquake and tsunami,” and appreciation for “the hard work and dedication of our US service members,” said claims “can and should be addressed under Japan’s nuclear compensation law.” TEPCO also “appreciates the plaintiffs’ service on Operation Tomodachi,” according to its e-mail, but declined to comment outside of court on pending judicial actions. TEPCO did add, “It is most unfortunate that some of the plaintiffs are ill.”

Ruby Perez was a 22-year-old petty officer first class on the Reagan during Operation Tomodachi. She was also pregnant. Perez told her mother, Rachel Mendez, about the snow falling during the first days of the operation. She and her shipmates were excited by a moment of diversion from the misery around them. As Mendez relayed her daughter’s story to me, “They were playing in it, eating the snow, making snow cones, making snowmen.”

Cooper, part of the flight deck crew, remembers the snow, too, though not so much as a light moment but rather as a symbol of decaying morale. After days of long hours and short rations, feeling isolated from the below-deck crew, knowing she’d been exposed to some radiation, she felt “knocked down.”

“Nobody really cared about anything. People were making radioactive snowmen on the flight deck out of radioactive snow,” she said. Dealing with the contamination and the stress “completely changed the dynamic of the ship.”

“Stress” was what the Reagan’s medical staff told Cooper when she asked about her blurred vision, poor depth perception, and loss of equilibrium during the early days of the mission.

“Gastroenteritis” was what she and many of her shipmates were told as a wave of bowel problems swept through the carrier over the next several weeks.

“I had a lot of issues with the restroom,” Cooper told me. “I don’t think I was the only one. People would shit themselves on the flight deck so often that it wasn’t even a surprise anymore. Like when you saw someone running from one side of the flight deck to go to decon[tamination], you knew something was happening.”

Torres’ experience was comparable. “I was going to the bathroom constantly,” he said. “I would eat something and I would go to the bathroom almost immediately.” It happened so often, Torres told me, that he developed severe internal hemorrhoids that eventually required multiple surgeries.

But when he visited the shipboard doctor, Torres was told he had diverticulitis, a disease not typically seen in men that young. “Watch your diet, don’t eat spicy food, and drink lots of water, eat lots of fiber,” that was the advice he said he received.

Cooper heard much the same: “Stay hydrated—drink water and eat a bland diet.” But the symptoms didn’t subside. “They didn’t attribute it to anything except ‘it’s going around,’” she said. But if that’s so, it’s been going around a long time. “I haven’t had a solid bowel movement since,” said Cooper.

Soon after Operation Tomodachi ended, when the Reagan ported in Bahrain, Cooper, who was 21 at the time, noticed her hair thinning. “I used to have really, really thick hair,” she said, but in Bahrain it became brittle and started falling out. Cooper said it still hasn’t recovered.

She also told me she now bruises easily and gets “burning, tingling sensations” on her arms, and a rash that extends from her hands to her elbows—an area that coincides with where she’d had her sleeves rolled up when she encountered the cloud at the start of the Japan mission. Cooper has also recently needed veneers on teeth she said have started to “shatter and break.”

For Piekutowski, the lance corporal from the Essex, he didn’t feel particularly sick until over a year after Operation Tomodachi. He was back stateside in the fall of 2012, and felt fatigued and had lost weight, and in November of that year, his ankles swelled up to the size of his calves. “I’m an in-shape and slim guy, and usually have pretty good definition,” he told me. His doctor thought it might be gout, though Piekutowski was skeptical. “I told him, I drink as much as the next 21-year-old, but I don’t drink that much.” Then, on Christmas Day, he lost the sight in his left eye. “That’s when I knew I should probably get to the hospital,” he said.

In the ER, Piekutowski said the doctors seemed to recognize right away what a blood test and bone-marrow biopsy later confirmed: He had leukemia. “They were honestly surprised I was still walking,” he said. Medical staff put him in a gown and rushed him to a bigger hospital.

Piekutowski was diagnosed with acute myelogenous leukemia (AML), an aggressive form of blood cancer most often seen in men over age 65. It is rare to see it in an otherwise healthy 21-year-old. He began treatment in Arizona, where he’d been living, but then moved to Chicago to be closer to his parents and what Piekutowski called “some pretty amazing doctors.”

From Christmas 2012 to Valentine’s Day 2014, Piekutowski figures he spent eight months in hospitals. He first went through a year of chemotherapy, but after four months in remission, his leukemia returned. He had radiation and a stem-cell transplant at the start of 2014, which has so far kept him cancer-free. But Piekutowski is still struggling to rebuild his immune system, and battling stiffness and stomach problems. “I feel like I’m 60,” he said.

Petty Officer Perez gave birth to her daughter Cecilia on March 26, 2011, and it was soon afterward that she told her mom she was feeling ill. “She just kept saying her menstrual periods would keep going and going and never stop,” said Mendez.

Despite her health, she reenlisted at the end of her tour. She was in San Diego trying to sort out some missing paperwork on her enlistment when she was hospitalized for a uterine hemorrhage. According to her mother, Perez was diagnosed with late-stage ovarian cancer in July 2016. Mendez wanted her daughter to come back to Texas, where she grew up, but Perez refused. She always believed she’d get better. “I can’t go home,” Mendez said Perez told her, “I just reenlisted. I still owe the Navy two years.”

On December 7, 2016, Ruby Perez died.

Perez is one of the eight deceased service members represented in the suits slowly making their way in US courts. Her daughter Cecilia, whose health will require a watchful eye well into adulthood, is also a plaintiff. So are 24 men and women currently living with various forms of cancer. So is a sailor whose son was born with brain and spinal tumors and lived only 26 months.

“We have a lot of clients with bone and joint issues, degenerative discs,” Cate Edwards told me, “young, healthy, active individuals who have trouble walking now.”

The most prevalent ailments, according to the younger Edwards, are thyroid-related. Thyroid cancers are some of the earliest to emerge after nuclear accidents because of the easy pathway for absorption of radioactive iodine. Childhood thyroid cancers skyrocketed in Belarus, Russia, and Ukraine in the first two decades after Chernobyl. According to a study published in the journal of the International Society for Environmental Epidemiology, individuals who were 18 or under at the time of the disaster in Fukushima Prefecture were 20-to-50 times more likely to be diagnosed with thyroid cancer in the period between the March 2011 and the end of 2014.

And health experts will tell you it is still too early to see many of the cancers and other illnesses that increase in incidence after exposure to ionizing radiation. Some can take 20 or 30 years to emerge. “That these sailors are getting the health effects they are already experiencing tells me that the radiation levels were extraordinarily high, and that we are likely just seeing the tip of the iceberg,” said nuclear-engineer Gundersen. “I think we’re going to see more of these people in the same boat as this initial wave of hundreds.”

“I can’t believe in a couple of years,” he added, “we won’t have thousands.”

Which is why, Cate Edwards told me, everyone who was part of Operation Tomodachi, even those who haven’t yet been diagnosed with particular ailments, are going to need additional medical monitoring for decades to come.

But General Electric and Tokyo Electric Power contend that these US citizens, from the US armed forces, who served on US ships, should seek their legal remedies in Japanese courts. “We believe these claims can and should be addressed under Japan’s nuclear compensation law, which provides relief for persons impacted by these events,” said GE in its e-mailed statement. (TEPCO did not respond specifically to a question about venue.)

The plaintiffs’ lawyers dismiss this idea. “It’s the difference between winning and losing,” John Edwards told me. “If the case ends up in Japan, it just goes away.”

The Edwardses and Bonner paint a picture of a Japanese legal system that is slanted in favor of industry. “You don’t get a jury trial in Japan,” said Bonner. “You don’t get punitive damages. Plaintiffs have to pay exorbitant fees to have their cases tried before politically involved judges,” and are not allowed to seek recovery of court costs, he said.

John Edwards added that Japan rarely awards damages for pain and suffering, loss of life, or the effects on a family. “They have an established compensation system,” he said, “they have never paid a dime for personal injury—it’s all for property damage.”

Indeed, while there were rulings in Japan’s courts last year against TEPCO and in favor of Japanese citizens, the awards were notably small (averaging $5,400 per person in one case, $1,500 in another), and were meant as compensation for residents of towns surrounding the nuclear plant who had to relocate. In a separate case in February, a Japanese court ordered TEPCO to pay $142,000 to the family of a 102-year-old man who killed himself after being told he’d have to leave his home inside the Fukushima radiation zone. TEPCO is still considering whether it will appeal.

One group of Tomodachi plaintiffs has been cleared to proceed in the US by the US Court of Appeals for the Ninth Circuit. A second group is still fighting in San Diego to establish jurisdiction in California courts, a hurdle all three of the plaintiffs’ attorneys are confident they will eventually clear.

And when the merits of the case have their day in a US court, “the only real defense,” for TEPCO and GE, said John Edwards, “is to try to argue, ‘Yeah, we screwed up, we know it was bad, but is that what really caused what happened to these people?’” In other words, the defendants will concede there was a disaster at Fukushima Daiichi, but will contend the plaintiffs weren’t harmed by it.

There are pretty strong indications that just such a defense is in the works. TEPCO spokesman Shinichi Nakakuki asserted in an e-mail to me that “objective scientific data demonstrates that plaintiffs were not exposed to amounts of radiation from the Fukushima Daiichi Nuclear Power Plant sufficient to cause illness.” Nakakuki wrote that radiation estimates by the United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) “confirm that the doses received by the plaintiffs were below the level that would give rise to adverse health effects.” The spokesman also referenced a report submitted by the US Defense Department to Congress in 2014 that downplayed the link between service on the Reagan during Operation Tomodachi and the specific cancers that had then emerged among crew members.

Time is one of the keys to understanding both of these reports. The Defense Department looked at the cancer rates only three years removed from the service members’ exposure, far too short a period to predict future numbers, according to radiation-expert Folkers. The UNSCEAR paper is even older than the DoD testimony, and has been roundly criticized for attempting to make bold predictions based on a small window and data extrapolated from analysis of Hiroshima and Nagasaki (which, aside from being drawn from a radically different exposure scenario, has itself been called into question by doctors and epidemiologists). UNSCEAR also appears to have averaged exposure over the entire island, not accounting for the notably higher exposures of those closest to the Daiichi reactors, according to analysis from Folkers’s Beyond Nuclear.

Dr. Keith Baverstock, the former chief radiation-protection expert at the World Health Organization who studied the Chernobyl disaster, said at the time that the UNSCEAR report was “not qualified to be called ‘scientific,’” and questioned the panel’s impartiality because its funding and membership came from the countries with the largest nuclear-power programs.

All of the radiation experts interviewed wondered whether the true scale of the radiation doses sustained by the Tomodachi sailors was ever measured. Safety specialist Kaltofen argued that most measurements don’t account for what are called “hot particles”—minute bits (6 to 9 microns in diameter) of intensely radioactive matter that can be extremely dangerous in close proximity, or if ingested, but are easily missed by measuring devices mere inches away. He also pointed out that different tissues are vulnerable to different isotopes in different ways, and that some parts of the body are much more sensitive to exposure than others. “One of them is the bowel,” he said, “because your intestines have villi, which are rapidly reproducing cells, and that means that they are extremely susceptible to radiation.” If radiation were ingested, or if the gut were exposed to a large external dose, you could see signs of real damage.

These are deterministic signs of radiation exposure, said Kaltofen, meaning you get a specific biological effect that might not itself be cancer, but would indicate the size and kind of exposures that could cause cancers later on. Folkers, discussing the sailors, put it more starkly: “The people in this case might be the dosimeters.”

Gundersen’s experience with radioactive noble gases led him to make another observation about dose estimates. Unless measurements were taken during those first days when ships were likely cloaked in plumes of radioactive xenon and krypton, the exposure would be missed, thus contributing to far-lower-than-accurate dose assessments. “Gases don’t show up on swipe tests, or anything like that,” he said. (Again, this level of methodological detail is not evident in the studies cited by TEPCO.) And Folkers stressed that the increased sensitivity to radiation seen in women and children is not part of most exposure models.

Folkers told me that there is a blood test that could more accurately estimate individuals’ exposures. Karyotyping, mapping chromosomes to look for specific abnormalities closely tied to radiation damage, has been around for decades, she said, but is too rarely done. (No one interviewed for this story believes karyotyping was done on the participants in Operation Tomodachi.) Folkers said that the tests are not only capable of predicting some future illnesses; they can also be used to extrapolate backward to determine the time and intensity of suspected radiation exposure.

But that level of specificity is not the argument lawyers expect in court, nor is it the standard public-health experts would say is appropriate. “Definitive cause is not the standard for protecting public health,” said Folkers, “association is the standard.”

In the case of the Tomodachi sailors, there was exposure to radiation, even if there is some dispute over the size and kind of dose any particular individual received. There are a number of symptoms and illnesses, long associated with radiation, that have been reported in the service members. If people are sick, would doctors, epidemiologists, workplace-safety experts, or public-health officials wait for absolute certitude of a causal link before implementing treatments and preventive actions?

Folkers and Kaltofen each said they would not. Even Petty Officer Cooper’s experience showed that the Navy—whether or not it acknowledges this now—had a basic recognition of this standard. “When you went down there,” she told me about her trips to the medical station on board the Reagan, “you were supposed to tell them if you were on the flight deck.” Depending on the answer, said Cooper, you might have seen a different doctor. “As soon as you said [where you worked], then, pretty much, they knew your issues.”

Cooper had actually reenlisted after Operation Tomodachi, but when the Navy told her “‘OK, you’re gonna do another sea tour with the Reagan,’” she said her response was “Nonononononono.” She told me she didn’t want any possible additional exposure to radiation on a ship she saw as contaminated from stem to stern. Cooper “took the hit” and applied for an “early out” from her reenlistment.

And the Navy, according to Cooper, “fast-tracked an early out because they understood.” Asking off the Reagan became so common, she told me, that there was a little “cheat sheet” on how to expedite the paperwork. “An early out would normally have taken me six months,” she said, “but they got it done in like two weeks.”

Cooper said that because her commanders were there, they understood what she’d suffered through after the radiation exposure, and knew the toll it took on the Reagan’s crew. “That deployment took a lot out of people,” she said. “A lot.”

For Torres, readjusting to civilian life after 27 years in the Navy was made much more difficult because of his post–Operation Tomodachi health problems. His own gastrointestinal difficulties, surgeries for hemorrhoids and hernias, and low-energy levels when he returned stateside deeply affected his mood and his relationships. Torres also said he feels guilt over “the young 17-, 18-year-old kids standing outside,” having to watch them “getting directly exposed” to the radioactive fallout as he stood inside conning the ship. “I have a lot of conflicted feelings,” he told me. “Could I have done something more? All these ‘what ifs.’”

There are plenty of “what ifs” to go around, but Torres is probably one of the last people who should feel guilty. Sure, Cooper now expresses regret for drinking too much of the ship’s tainted water. Piekutowski wishes he’d found a way to avoid spending five days exposed to the elements without any protection. Even Rachel Mendez, mother of Ruby Perez, wonders if she shouldn’t have been so encouraging when her daughter decided to join the Navy.

And some who served question if the Navy did all it could to protect its personnel (though not all, and not all the time). Did the Reagan spend too much time too close to shore? Did commanders always put the health and safety of sailors first when addressing the contamination of the ship and the water system? Did the US military measure properly for radiation, or perform the right tests for exposure? Are they doing all they can now to track the health of, and to care for, the Tomodachi veterans?

Watchdogs and health experts will tell you those are valid questions—especially if they better ensure the well-being of all the sailors going forward—but the attorneys will say that, while the military and the VA have responsibilities for the medical care of service members and veterans, “they are not, in a legal sense,” as Cate Edwards told me, “responsible for the exposure itself.”

(The Navy, for its part, said in an e-mailed statement that it has “a long distinguished history with the successful management of its occupational ionizing radiation exposure program.” It acknowledged some risk from radiation exposure at any level, but said the risks borne by the Reagan sailors were “small compared to other risk” accepted in work and everyday life. In making this assessment, they cite the same 2014 Defense Department report referenced by TEPCO.)

“The end of the road is not the VA,” said John Edwards. The main issue, as Edwards put it, is, “If you’re going to have nuclear plants, make sure they’re designed, built, maintained, and monitored properly.”

And the question of whether TEPCO and GE did do those things properly is not just of interest to the sailors or the residents of northern Honshu—in the minds of all the attorneys and experts interviewed for this story, it is of keen relevance to tens of millions of people living in the United States.

“There’s an obvious connection between what happened in Japan and what could happen in the United States,” said John Edwards. “What they failed to do in the manufacture and maintenance of the facility in Japan also occurred, and is occurring, in the US.”

There are currently 99 operating civilian nuclear reactors in the United States, and 22 of those are General Electric Mark 1 boiling-water reactors—the make and model identical to the three that melted down and exploded at Fukushima Daiichi. Based on a 1955 design, all but four of the US reactors have now been online for more than 40 years. All of them have the same too-small primary containment vessel, the same questionable alloys, the same bolted-on lid, the same safety systems, and (with one exception) the same vent “upgrade” that failed to prevent the tragic failures at the Japanese nuclear plant. Large US cities, such as Boston, Chicago, Detroit, Philadelphia, and Washington, DC, are all closer to BWRs than Tokyo is to Fukushima Daiichi.

“It starts with the design,” Cate Edwards told me, and the complaint filed on behalf of the Tomodachi sailors goes into great detail about the flaws on the Japanese reactors that mirror the ones in the United States. “Each one of these Mark 1 BWRs is defective,” said Bonner.

For Folkers, the lesson is to look at nuclear power plants through the lens of public health. Don’t wait until after an incident to argue over which illnesses might or might not have been caused by a particular dose. Instead, Folkers urged, establish baselines for what the population’s blood work and chromosomes look like beforehand. Then, instead of only starting the fact-finding after an accidental release of radiation, or when a mysterious cancer cluster emerges—when too many vested interests invoke “what-aboutism,” as she called it, to obscure responsibility—already-informed public officials and medical professionals can focus on the response to emerging health problems.

For Kaltofen, the environmental-safety expert, the focus should be on prevention and planning before treatment and tracking. “It’s very hard to come up with a response plan after the fact,” he said.

And, most importantly, for the sailors, Marines, and pilots who rushed into harm’s way to provide emergency aid and humanitarian relief to people battling a devil’s trident of disasters, the acknowledgment of their radiation exposure and the acceptance of responsibility by those who caused it could potentially be as life-changing as their service in Operation Tomodachi.

Sure, it might mean a measure of financial compensation were they to win a settlement, but for the sailors who spoke to me, that would be secondary. Foremost, a victory in court would mean a degree of respect for what they did, how they’ve suffered, and what they might need down the line—not just for those who are ailing today but also for the potentially thousands who might get sick in the future. As Angel Torres told me, “Set up an infrastructure to address those issues. Do the right thing and provide for people that were misled. Let them know, ‘You are not alone.’” ”

by Gregg Levine, The Nation

source with photos and internal links