Public funds earmarked to decontaminate Fukushima’s ‘difficult-to-return’ zone — The Mainichi

” The government is set to inject some 30 billion yen in public funds into work to decontaminate so-called “difficult-to-return” areas whose annual radiation levels topped 50 millisieverts in 2012 due to the Fukushima No. 1 Nuclear Power Plant disaster, it has been learned.

While the government had maintained that it would demand plant operator Tokyo Electric Power Co. (TEPCO) cover the decontamination expenses based on the polluter-pays principle, the new plan effectively relieves TEPCO from the hefty financial burden by having taxpayers shoulder the costs.

The new plan is part of the government’s basic guidelines for “reconstruction bases” to be set up in each municipality within the difficult-to-return zone in Fukushima Prefecture from fiscal 2017, with the aim of prioritizing decontamination work and infrastructure restoration there. The government is seeking to lift evacuation orders for the difficult-to-return zone in five years.

However, the details of the reconstruction bases, such as their size and locations, have yet to be determined due to ongoing discussions between local municipalities and the Reconstruction Agency and other relevant bodies.

The government is set to obtain Cabinet approval for the basic guidelines on Dec. 20 before submitting a bill to revise the Act on Special Measures for the Reconstruction and Revitalization of Fukushima to the regular Diet session next year. The 30 billion yen in funds for the decontamination work will be set aside in the fiscal 2017 budget.

In the basic guidelines, the government states that decontamination work at the reconstruction bases is part of state projects to accelerate Fukushima’s recovery and that the costs for the work will be covered by public funds without demanding TEPCO to make compensation. The statement is also apparently aimed at demonstrating the government’s active commitment to Fukushima’s restoration.

Under the previous guidelines for Fukushima’s recovery approved by the Cabinet in December 2013, the government had stated that it would demand TEPCO cover the decontamination expenses of both completed and planned work. However, it hadn’t been decided who would shoulder the decontamination costs for the difficult-to-return zone as there was no such plan at that point.

Masafumi Yokemoto, professor at Osaka City University who is versed in environmental policy, criticized the government’s move, saying, “If the government is to shoulder the cost that ought to be covered by TEPCO, the government must first accept its own responsibility for the nuclear disaster, change its policy and investigate the disaster before doing so. Otherwise, (spending taxpayers’ money on decontamination work) can’t be justified.” “

by The Mainichi

source

Advertisements

Citizen science takes on Japan’s nuclear establishment — Los Angeles Times

” As other Tokyo office workers poured into restaurants and bars at quitting time one recent evening, Kohei Matsushita went to the eighth floor of a high-rise for an unusual after-hours activity: learning how to assemble his own Geiger counter from a kit.

Hunched over a circuit board, the 37-year-old practiced his soldering technique as Joe Moross, a former L.A. resident with a background in radiation detection, explained how to fit together about $500 worth of components – including a sensor, circuit board, digital display, GPS module, battery and case.

“My family has a house near a nuclear power plant,” Matsushita said, explaining his motivation. “I want to take this there and collect data, and contribute to this pool of information.”

“This pool” is a stunning set of data – 50 million readings and counting, all logged and mapped on a website anyone can see – collected by volunteers with self-built equipment. Known as Safecast, the group was founded just days after the massive earthquake, tsunami and nuclear meltdown that shocked Japan in March 2011.

Though the immediate threat of radiation from the Fukushima Daiichi nuclear power plant has waned, interest in Safecast’s data has not. The organization, which takes no position on nuclear power, is supported by foundations, grants and individual donations.

Part of the growing movement known as citizen science, the idea is to give people the knowledge and the tools to better understand their environment, and make more informed decisions based on accurate information.

Trust in both nuclear power plant operators and the government has not fully recovered since the disaster. As authorities push ahead with the contentious process of restarting dozens of nuclear reactors taken off-line in wake of the disaster, Japanese like Matsushita say a network of monitors controlled by ordinary people could serve as an early warning system in the event of another disaster.

Meanwhile, as Prime Minister Shinzo Abe’s administration continues with its extensive effort to decontaminate areas around Fukushima Daiichi and reopen evacuated towns and villages, potential returnees say they want a way to verify official numbers that indicate radiation really has dropped to safe levels.

“They want people to come back, but there’s no decontamination in the forest areas and those cover 75% of this village,” says retired engineer Nobuyoshi Ito, 72, who in 2010 opened an eco-farm retreat in Iitate, about 20 miles northwest of the nuclear power plant. Recently, he had Safecast install a radiation monitor at the retreat, which is still in a restricted zone.  “We have to check ourselves.”

++

Joe Moross straps a GPS-enabled Geiger counter the size of a small brick to the back window of his red station wagon on the outskirts of Tokyo and begins a 16-hour day driving north through the most contaminated areas around the Fukushima nuclear plant. In the last five years, he calculates he’s driven 90,000 miles gathering data for Safecast.

Through a Bluetooth connection, he can monitor the Geiger counter’s readings on his cellphone as he goes. But he also keeps a mental log of more qualitative signs of the region’s transformation.

“That 7-Eleven reopened in 2014,” he notes as he nears the town of Tomioka. “That Family Mart came back in 2015.” In the town of Naraha, he gasps. “That’s the first rice growing in the fields here in five years!”

Along the way, he passes several dozen fixed-point radiation monitors installed by the government along the roadsides. Their solar-powered, digital displays provide readouts in microsieverts per hour (μSv/hr); today’s show relatively low readings from 0.1 to 3.8 between the towns of Hirono and Minamisoma. That is less than what one would be exposed to on a long flight, although that exposure lasts only as long as the flight.

Moross’ much more granular, mobile data, recorded every five seconds and uploaded to the Web the next day, generally matches the government signs, though when passing near the Fukushima plant, Moross’ counter produces readings above 4 μSv/hr. (Not long after the disaster, Safecast found readings higher than 30 in the region).

In the town of Iwaki, Moross drops in on Brett Waterman, a 51-year-old Australian who’s been teaching English in the area for 11 years and was having some technical issues with a Safecast monitor.

“Like most people, I knew nothing about radiation” when the disaster hit, says Waterman, who acquired an early Safecast Geiger counter through Kickstarter and has since upgraded to more sophisticated models as the group has refined its designs. Waterman says the data indicate Iwaki is now safe, but it’s important to keep generating frequent readings to provide a reference of what’s “normal” in case circumstances change.

Safecast holds regular sessions for adults to teach them to assemble their own devices and is planning a kids’ workshop as well. Plans and directions for building the devices are also available online for free. Organizers say that people who build their own monitors are much more motivated to use them.

“If they just buy one, they may use it once, throw it in a drawer and never upload any data,” says Moross. “If they make it themselves, they’re more invested.”

++

Safecast’s tiny Tokyo office feels like a combination tech start-up, old-school shop class, and comedy club for middle-aged expats. As Moross inspects Matsushita’s soldering progress, English teacher Jonathan Wilder, 59, is busy gathering switches, resistors, batteries, and sensors and parceling them out into plastic bags that will become kits for Safecast’s current workhorse Geiger counter, known as the bGeigie Nano.  

Moross and Wilder trade jokes as Azby Brown, 60, an expert on traditional Japanese architecture, sits at another table typing up news for the group’s blog; he has just led Safecast’s efforts to publish its first scientific paper, in the Journal of Radiological Protection. Pieter Franken, a Dutch expatriate and chief technology officer for a large securities firm, looks over some materials for the group’s upcoming kids’ workshop.

“Safecast is an interesting social experiment, in a fairly anarchistic kind of way,” says Franken, one of the group’s founders. “It taps into trends including maker-spaces, the Internet of things and even artists. We attract people who want to break out of the traditional way of solving problems.”

Safecast grew out of an email conversation among Franken, L.A.-based tech entrepreneur Sean Bonner and MIT Media Lab director Joichi “Joi” Ito immediately after the March 11, 2011, disaster. As the Fukushima crisis unfolded, Safecast’s effort to produce and distribute Geiger counters and collect data snowballed, drawing in more expertise and volunteers. The group has successively iterated smaller and smaller Geiger counters with more functionality for data collection.

In the last five years, Safecast volunteers have taken radiation readings all over the world, from Brisbane, Australia, to Santa Monica. The group is also working on monitoring air quality in Los Angeles and elsewhere; recently, volunteers took methane readings around Porter Ranch during the gas leak there. Now, Safecast is trying to figure out how to depict that kind of data meaningfully online.

Moross says the potential applications for citizen-based environmental monitoring are vast, pointing to incidents such as the recent scandal over the lead-tainted water supply in Flint, Mich., as an example of where deeper community-based scientific knowledge could have improved debate and policymaking.

“Flint and Fukushima have parallels,” says Moross. “Democracy should start from facts, and we need to give citizens facts to understand what’s happening.”

Safecast has taken heat from both pro- and anti-nuclear activists, Brown says. “But if people spend some time with us, they find we are valuable.” Even Japan’s postal service has cooperated with Safecast, putting its monitors on carriers’ motorbikes in some towns and gathering data.

Safecast’s goal now is, essentially, “base-lining the world,” says Franken, crowdsourcing environmental data from every corner of the Earth.

“We should start with measuring our environments,” he says. “Then we can talk about things like global warming and air pollution; from there, activism can start. Once you know, for example, that your street is polluted, you can start to make a change. That’s where we can make a difference.” ”

by Julie Makinen

source with video

10,000 Fukushima children still live outside prefecture after disaster — Nikkei Asian Review

” FUKUSHIMA, Japan (Kyodo) — Some 10,000 children whose families fled Fukushima Prefecture because of the March 2011 nuclear disaster have yet to return, prefectural government officials said Thursday.

Five years after the earthquake and ensuing tsunami triggered the radiation crisis at the Fukushima Daiichi nuclear complex, families with children continue to have serious reservations about environmental safety, according to a recent survey by the prefectural government.

As of last October, the number of such minors who have evacuated to areas outside the prefecture stood at 10,557. Among them, 4,760 were from 12 coastal municipalities designated as evacuation zones in the nuclear crisis, the survey said. The prefecture has 59 municipalities.

With young people absent from those areas, reconstruction may be difficult in the future, experts say.

“We need to implement more measures to improve the child-rearing environment (for their parents) to enable those children to return home” because the children are with their families, a prefectural government official of the children and youth division said.

The prefectural government has allocated subsidies to make medical costs free for children under 18 since October 2012. Since last year, the local government subsidizes moving expenses for those evacuees who want to return to their hometowns.

Some families are estimated to have transferred their resident registration to the municipalities to which they have fled, most likely making the actual number of evacuee minors from Fukushima higher, prefectural government officials said.

There were about 18,000 child evacuees as of April 2012. The number gradually declined after evacuation orders for some municipalities were lifted because radiation doses have dropped due to decontamination works. As of Feb. 1, the prefecture’s population stood at around 1.91 million. ”

source

Five years after the meltdown, is it safe to live near Fukushima? — Science

” A  long, grinding struggle back to normal is underway at the Fukushima Daiichi Nuclear Power Plant in Japan. As workers make progress in cleaning up contaminated land surrounding its infamous reactor, evacuees are grappling with whether to return to homes sealed off since the accident there 5 years ago. The power plant itself remains a dangerous disaster zone, with workers just beginning the complex, risky job of locating the melted fuel and figuring out how to remove it.

The magnitude 9.0 earthquake that struck northeastern Japan on 11 March 2011 and the 40-meter tsunami that followed left 15,893 dead and 2572 missing, destroyed 127,290 buildings, and damaged more than a million more. It also triggered the meltdowns at Fukushima and the evacuation of 150,000 people from within 20 kilometers of the nuclear plant as well as from areas beyond that were hard hit by fallout.

Now, the nuclear refugees face a dilemma: How much radiation in their former homes is safe? In a herculean effort, authorities have so far scooped up some 9 million cubic meters of contaminated soil and leaves and washed down buildings and roadways with the goal of reducing outdoor radiation exposure to 0.23 microsieverts per hour. Last September, the government began lifting evacuation orders for the seven municipalities wholly or partly within 20 kilometers of the plant. As the work progresses, authorities expect that 70% of the evacuees will be allowed to return home by spring 2017.

But evacuees are torn over safety and compensation issues. Many claim they are being compelled to go home, even though radiation exposure levels, they feel, are still too high. “There has been no education regarding radiation,” says Katsunobu Sakurai, the mayor of Minamisoma, where 14,000 people were evacuated after the accident. “It’s difficult for many people to make the decision to return without knowing what these radiation levels mean and what is safe,” he says. Some citizen groups are suing the national government and Tokyo Electric Power Company (TEPCO), the Fukushima plant’s owner, over plans to end compensation payments for those who choose not to return home. Highly contaminated areas close to the nuclear plant will remain off limits indefinitely.

Conditions at the plant are “really stable,” the plant manager, Akira Ono, recently told reporters. Radioactivity and heat from the nuclear fuel have fallen substantially in the past 5 years, he says. But cleanup is off to a slow start, hampered by sketchy knowledge of where the nuclear fuel is located. Last year managers agreed to a road map for decommissioning the site over the next 30 to 40 years that calls for removing melted nuclear fuel masses and demolishing the plant’s four reactor halls at a cost that could top $9 billion. TEPCO intends to start removing nuclear debris from the reactors in 2021.

Ono puts the decommissioning at “around 10%” complete. One big hurdle was cleared in December 2014, when crews removed the last of 1535 fuel rods stored in the Unit 4 spent fuel pool. At the time of the accident, some feared that cooling water had drained out of the pool and exposed the fuel to air, which might have led to overheating and melting. It hadn’t, but the fuel remained a threat.

The biggest challenge at present, Ono says, is contaminated water. Cooling water is continuously poured over the melted cores of units 1, 2, and 3 to keep the fuel from overheating and melting again. The water drains into building basements, where it mixes with groundwater. To reduce the amount of contaminated water seeping into the ocean, TEPCO collects and stores it in 10-meter-tall steel tanks. They now fill nearly every corner of the grounds, holding some 750,000 tons of water. The government is evaluating experimental techniques for cleansing the water of a key radioisotope, tritium. Ono says a solution is sorely needed before the plant runs out of room for more tanks.

TEPCO has found ways to divert groundwater from the site, cutting infiltration to about 150 tons per day. Now it’s about to freeze out the rest. Borrowing a technique for making temporary subsurface barriers during tunnel construction, a contractor has driven 1500 pipes 30 meters down to bedrock, creating something akin to an underground picket fence encircling the four crippled reactor units. Brine chilled to –30°C circulating in the pipes will freeze the soil between the pipes; the frozen wall should keep groundwater out and contaminated water in. TEPCO was planning to start the operation shortly after Science went to press.

The most daunting task is recovering the fuel debris. TEPCO modeling and analyses suggest that most, if not all, of the fuel in the Unit 1 reactor melted, burned through the reactor pressure vessel, dropped to the bottom of the containment vessel, and perhaps ate into the concrete base. Units 2 and 3 suffered partial meltdowns, and some fuel may remain in the cores.

To try to confirm the location and condition of the melted fuel, the International Research Institute for Nuclear Decommissioning, set up by TEPCO and other entities, has been probing the reactors’ innards with muons. Wispy cousins of the electron, muons are generated by the trillions each minute when cosmic rays slam into the upper atmosphere. A few muons are absorbed or scattered, at a rate that depends on a material’s density. Because uranium is denser than steel or concrete, muon imaging can potentially locate the fuel debris.

In February 2015, a group at Japan’s High Energy Accelerator Research Organization in Tsukuba supplied two van-sized muon detectors, which TEPCO placed adjacent to the Unit 1 reactor at ground level. After a month of collecting muons, the detectors confirmed there was no fuel left in the core. Because they were positioned at ground level, the devices could not image the reactor building basements and so could not pin down where the fuel is or its condition. TEPCO plans to use robots to map the location of the fuel debris so it can develop a strategy for removing it (see story, right).

A second team has developed detectors that observe muons before and after they pass through an object of interest, promising a more precise picture of reactor interiors. For Fukushima, the researchers—from Los Alamos National Laboratory in New Mexico and Japan’s Toshiba Corp.—built mammoth detectors, 7 meters across, which they intended to place outside Unit 2. That work has been postponed because TEPCO decided to first send a robot into the containment vessel; high radiation levels have delayed that plan. “Our current task is to reduce that exposure,” Ono says, using robotic floor and wall scrubbers in the area workers need to access to deploy the robot.

While the authorities struggle to clean up the site and resettle residents, some locals are judging safety for themselves. In 2014, a group of enterprising high school students in Fukushima city, outside the evacuation zone, launched an international radiation-dosimetry project. Some 216 students and teachers at six schools in Fukushima Prefecture, six elsewhere in Japan, four in France, eight in Poland, and two in Belarus wore dosimeters for 2 weeks while keeping detailed diaries of their whereabouts and activities. “I wanted to know how high my exposure dose was and I wanted to compare that dose with people living in other places,” explains Haruka Onodera, a member of Fukushima High School’s Super Science Club, which conceived the project. The students published their findings last November in the Journal of Radiological Protection. Their conclusion: “High school students in Fukushima [Prefecture] do not suffer from significantly higher levels of radiation” than those living elsewhere, Onodera says.

That’s good news for Fukushima city residents, perhaps, but cold comfort to displaced people now weighing the prospect of moving back to homes closer to the shattered nuclear plant. ”

by Dennis Normile

source

Fukushima evacuees begin three-month stays in their homes ahead of final return – The Japan Times

” FUKUSHIMA – Evacuees from three municipalities in Fukushima Prefecture are being allowed to return home for long-term stays before the central government formally lifts the evacuation order for those areas.

The government says it made the move, which took effect Monday, because radiation levels have dropped sufficiently in Minamisoma, Kawamata and Katsurao since the March 2011 meltdowns at the Fukushima No. 1 nuclear plant.

The government will decide by November whether to lift the evacuation order after hearing from the evacuees.

The long-term stays are allowed for 14,255 people in 4,647 households, the largest number in the long-stay program so far.

Some areas will remain no-go zones because radiation levels remain high.

As of Monday, 1,308 people in 478 households, some 10 percent of the total, had reported to the government that they would start the long-term stays in their homes.

Decontamination work in residential areas in Kawamata and Katsurao was completed in summer last year, halving the average radiation level in the air to 0.5 microsievert per hour.

In Minamisoma, only 26 percent of decontamination work had been finished by the end of July, but natural falls in radiation levels were taken into consideration.

Dosimeters will be given to each household, while consultants will be dispatched to check the health status of residents. Minamisoma has set next April as its target date for the lifting of the evacuation order, while Katsurao and Kawamata are being less exact and have set the target for next spring.

Long-term stays have already been conducted in Tamura and part of Kawauchi, where evacuation orders have been removed, and in Naraha, where it is slated to be lifted on Wednesday. ”

source