Fears of another Fukushima as Tepco plans to restart world’s biggest nuclear plant — The Guardian

” If a single structure can define a community, for the 90,000 residents of Kashiwazaki town and the neighbouring village of Kariwa, it is the sprawling nuclear power plant that has dominated the coastal landscape for more than 40 years.

When all seven of its reactors are in operation, Kashiwazaki-kariwa generates 8.2m kilowatts of electricity – enough to power 16m households. Occupying 4.2 sq km of land along the Japan Sea coast, it is the biggest nuclear power plant in the world.

But today, the reactors at Kashiwazaki-kariwa are idle. The plant in Niigata prefecture, about 140 miles (225km) north-west of the capital, is the nuclear industry’s highest-profile casualty of the nationwide atomic shutdown that followed the March 2011 triple meltdown at Fukushima Daiichi.

The company at the centre of the disaster has encountered anger over its failure to prevent the catastrophe, its treatment of tens of thousands of evacuated residents and its haphazard attempts to clean up its atomic mess.

Now, the same utility, Tokyo Electric Power [Tepco], is attempting to banish its Fukushima demons with a push to restart two reactors at Kashiwazaki-kariwa, one of its three nuclear plants. Only then, it says, can it generate the profits it needs to fund the decommissioning of Fukushima Daiichi and win back the public trust it lost in the wake of the meltdown.

This week, Japan’s nuclear regulation authority gave its formal approval for Tepco to restart the Kashiwazaki-kariwa’s No. 6 and 7 reactors – the same type of boiling-water reactors that suffered meltdowns at Fukushima Daiichi.

After a month of public hearings, the nuclear regulation authority concluded that Tepco was fit to run a nuclear power plant and said the two reactors met the stricter safety standards introduced after the 2011 disaster.

Just before that decision, Tepco gave the Guardian an exclusive tour of what it claims will be the safest nuclear plant in the world.

Now, as on the day of the triple disaster that brought widespread destruction to Japan’s northeast coast, Kashiwazaki-kariwa has the look of a working nuclear plant. Just over 1,000 Tepco staff and 5,000-6,000 contract workers provide the manpower behind a post-Fukushima safety retrofit that is projected to cost 680 billion yen ($6.1bn).

They have built a 15-metre-high seawall that, according to Tepco, can withstand the biggest tsunami waves. In the event of a meltdown, special vents would keep 99.9% of released radioactive particles out of the atmosphere, and corium shields would block molten fuel from breaching the reactors’ primary containment vessels. Autocatalytic recombiners have been installed to prevent a repeat of the hydrogen explosions that rocked four of Fukushima Daiichi’s reactors.

Other parts of the sprawling complex are home to fleets of emergency vehicles, water cannon, back-up power generators, and a hilltop reservoir whose 20,000 tonnes of water will be drawn to cool reactors in the event of a catastrophic meltdown.

“As the operator responsible for the Fukushima accident, we’re committed to learning lessons, revisiting what went wrong and implementing what we learned here at Kashiwazaki-kariwa, says the plant’s chief, Chikashi Shitara. “We are always looking at ways to improve safety.

“Because of our experience at Fukushima, we’re committed to not making the same mistakes again – to make the safety regime even stronger. That’s what we have to explain to members of the public.”

‘This is no place for a nuclear power plant’

The public, however, is far from convinced. Last year, the people of Niigata prefecture registered their opposition to the utility’s plans by electing Ryuichi Yoneyama, an anti-nuclear candidate, as governor. Exit polls showed that 73% of voters opposed restarting the plant, with just 27% in favor.

Yoneyama has said that he won’t make a decision on the restarts, scheduled for spring 2019, until a newly formed committee has completed its report into the causes and consequences of the Fukushima disaster – a process that could take at least three years.

For many residents, the plant’s location renders expensive safety improvements irrelevant. “Geologically speaking, this is no place for a nuclear power plant,” says Kazuyuki Takemoto, a retired local councillor and a lifelong anti-nuclear activist.

Takemoto cites instability caused by the presence of underground oil and gas deposits in the area, and evidence that the ground on which Tepco’s seawall stands is prone to liquefaction in the event of a major earthquake.

Local critics have pointed to the chaos that could result from attempting to evacuate the 420,000 people who live within a 30km radius of Kashiwazaki-kariwa. “That’s more people than lived near Fukushima, plus we get very heavy snowfall here, which would make evacuating everyone impossible,” Takemoto adds. “The situation would be far worse than it was in Fukushima.”

Adding to their concerns are the presence of seismic faults in and around the site, which sustained minor damage during a magnitude-6.6 offshore earthquake in 2007. Two active faults – defined by nuclear regulators as one that has moved any time within the last 400,000 years – run beneath reactor No. 1.

But for Tepco, a return to nuclear power generation is a matter of financial necessity, with the utility standing to gain up to ¥200 billion in annual profits by restarting the two reactors at Kashiwazaki-Kariwa.

The bill for decommissioning Fukushima Daiichi, decontaminating neighbourhoods and compensating residents affected by the meltdown could reach 21.5tr yen [$191bn], according to government estimates. That is on top of the money the firm is spending on importing expensive fossil fuels to fill the vacuum left by the nuclear shutdown.

Earlier this year, the Japan Centre for Economic Research said the total cost of the four-decade Fukushima cleanup – including the disposal of radioactive waste from the plant’s three damaged reactors – could soar to between 50-70tr yen.

“As Tepco’s president and our general business plan have made clear, restarting the reactors here is very important to us as a company,” says Shitara.

Much is at stake, too, for Japan’s prime minister, Shinzo Abe, who has put an ambitious return to nuclear power generation at the centre of his energy policy. His government wants nuclear to provide about 20 percent Japan’s electricity by 2030 – a move that would require the restart of about 30 reactors.

Of the country’s 48 operable reactors, only four are currently online. Several others have passed stringent new safety tests introduced in the wake of Fukushima, but restarts have encountered strong local opposition.

As part of the restart process, people across Japan were recently invited to submit their opinions on the Kashiwazaki-kariwa restart and Tepco’s suitability as a nuclear operator.

Kiyoto Ishikawa, from the plant’s public relations department, insists Tepco has learned the lessons of Fukushima. “Before 3-11 we were arrogant and had stopped improving safety,” he said. “The earthquake was a wake-up call. We now know that improving safety is a continuous process.”

The firm’s assurances were dismissed by Yukiko Kondo, a Kariwa resident, who said the loss of state subsidies if the plant were to remain permanently idle was a sacrifice worth making if it meant giving local people peace of mind.

“Tepco caused the 2011 accident, so there is no way I would ever support restarting nuclear reactors here,” she said. “They kept telling us that Fukushima Daiichi was perfectly safe – and look what happened.” ”

by Justin McCurry, The Guardian

source with internal links

Advertisements

Six years after Fukushima, robots finally find reactors’ melted uranium fuel — The New York Times

” FUKUSHIMA DAIICHI NUCLEAR POWER PLANT, Japan — Four engineers hunched before a bank of monitors, one holding what looked like a game controller. They had spent a month training for what they were about to do: pilot a small robot into the contaminated heart of the ruined Fukushima nuclear plant.

Earlier robots had failed, getting caught on debris or suffering circuit malfunctions from excess radiation. But the newer version, called the Mini-Manbo, or “little sunfish,” was made of radiation-hardened materials with a sensor to help it avoid dangerous hot spots in the plant’s flooded reactor buildings.

The size of a shoe box, the Manbo used tiny propellers to hover and glide through water in a manner similar to an aerial drone.

After three days of carefully navigating through a shattered reactor building, the Manbo finally reached the heavily damaged Unit 3 reactor. There, the robot beamed back video of a gaping hole at the bottom of the reactor and, on the floor beneath it, clumps of what looked like solidified lava: the first images ever taken of the plant’s melted uranium fuel.

The discovery in July at Unit 3, and similar successes this year in locating the fuel of the plant’s other two ruined reactors, mark what Japanese officials hope will prove to be a turning point in the worst atomic disaster since Chernobyl.

The fate of the fuel had been one of the most enduring mysteries of the catastrophe, which occurred on March 11, 2011, when an earthquake and 50-foot tsunami knocked out vital cooling systems here at the plant.

Left to overheat, three of the six reactors melted down. Their uranium fuel rods liquefied like candle wax, dripping to the bottom of the reactor vessels in a molten mass hot enough to burn through the steel walls and even penetrate the concrete floors below.

No one knew for sure exactly how far those molten fuel cores had traveled before desperate plant workers — later celebrated as the “Fukushima Fifty” — were able to cool them again by pumping water into the reactor buildings. With radiation levels so high, the fate of the fuel remained unknown.

As officials became more confident about managing the disaster, they began a search for the missing fuel. Scientists and engineers built radiation-resistant robots like the Manbo and a device like a huge X-ray machine that uses exotic space particles called muons to see the reactors’ innards.

Now that engineers say they have found the fuel, officials of the government and the utility that runs the plant hope to sway public opinion. Six and a half years after the accident spewed radiation over northern Japan, and at one point seemed to endanger Tokyo, the officials hope to persuade a skeptical world that the plant has moved out of post-disaster crisis mode and into something much less threatening: cleanup.

“Until now, we didn’t know exactly where the fuel was, or what it looked like,” said Takahiro Kimoto, a general manager in the nuclear power division of the plant’s operator, Tokyo Electric Power Co., or Tepco. “Now that we have seen it, we can make plans to retrieve it.”

Tepco is keen to portray the plant as one big industrial cleanup site. About 7,000 people work here, building new water storage tanks, moving radioactive debris to a new disposal site, and erecting enormous scaffoldings over reactor buildings torn apart by the huge hydrogen explosions that occurred during the accident.

Access to the plant is easier than it was just a year ago, when visitors still had to change into special protective clothing. These days, workers and visitors can move about all but the most dangerous areas in street clothes.

A Tepco guide explained this was because the central plant grounds had been deforested and paved over, sealing in contaminated soil.

During a recent visit, the mood within the plant was noticeably more relaxed, though movements were still tightly controlled and everyone was required to wear radiation-measuring badges. Inside a “resting building,” workers ate in a large cafeteria and bought snacks in a convenience store.

At the plant’s entrance, a sign warned: “Games like Pokemon GO are forbidden within the facility.”

“We have finished the debris cleanup and gotten the plant under control,” said the guide, Daisuke Hirose, a spokesman for Tepco’s subsidiary in charge of decommissioning the plant. “Now, we are finally preparing for decommissioning.”

In September, the prime minister’s office set a target date of 2021 — the 10th anniversary of the disaster — for the next significant stage, when workers begin extracting the melted fuel from at least one of the three destroyed reactors, though they have yet to choose which one.

The government admits that cleaning up the plant will take at least another three to four decades and tens of billions of dollars. A $100 million research center has been built nearby to help scientists and engineers develop a new generation of robots to enter the reactor buildings and scoop up the melted fuel.

At Chernobyl, the Soviets simply entombed the charred reactor in concrete after the deadly 1986 accident. But Japan has pledged to dismantle the Fukushima plant and decontaminate the surrounding countryside, which was home to about 160,000 people who were evacuated after accident.

Many of them have been allowed to return as the rural towns around the plant have been decontaminated. But without at least starting a cleanup of the plant itself, officials admit they will find it difficult to convince the public that the accident is truly over.

They also hope that beginning the cleanup will help them win the public’s consent to restart Japan’s undamaged nuclear plants, most of which remain shut down since the disaster.

Tepco and the government are treading cautiously to avoid further mishaps that could raise doubts that the plant is under control.

“They are being very methodical — too slow, some would say — in making a careful effort to avoid any missteps or nasty surprises,” said David Lochbaum, director of the nuclear safety project at the Union of Concerned Scientists, who was a co-author of a book on the disaster.

“They want to regain trust. They have learned that trust can be lost much quicker than it can be recovered.”

To show the course followed by the Manbo, Tepco’s Mr. Hirose guided me inside the building containing the undamaged Unit 5 reactor, which is structurally the same as two of the destroyed reactors.

Mr. Hirose pointed toward the spot on a narrow access ramp where two robots, including one that looked like a scorpion, got tangled in February by debris inside the ruined Unit 2.

Before engineers could free the scorpion, its monitoring screen faded to black as its electronic components were overcome by radiation, which Tepco said reached levels of 70 sieverts per hour. (A dose of one sievert is enough to cause radiation sickness in a human.)

Mr. Hirose then led me underneath the reactor, onto what is called the pedestal.

The bottom of the reactor looked like a collection of huge bolts — the access points for control rods used to speed up and slow down the nuclear reaction inside a healthy reactor. The pedestal was just a metal grating, with the building’s concrete floor visible below.

“The overheated fuel would have dropped from here, and melted through the grating around here,” Mr. Hirose said, as we squatted to avoid banging our heads on the reactor bottom. The entire area around the reactor was dark, and cluttered with pipes and machinery.

To avoid getting entangled, the Manbo took three days to travel some 20 feet to the bottom of Unit 3.

To examine the other two reactors, engineers built a “snake” robot that could thread its way through wreckage, and the imaging device using muons, which can pass through most matter. The muon device has produced crude, ghostly images of the reactors’ interiors.

Extracting the melted fuel will present its own set of technical challenges, and risks.

Engineers are developing the new radiation-resistant robots at the Naraha Remote Technology Development Center. It includes a hangar-sized building to hold full-scale mock-ups of the plant and a virtual-reality room that simulates the interiors of the reactor buildings, including locations of known debris.

“I’ve been a robotic engineer for 30 years, and we’ve never faced anything as hard as this,” said Shinji Kawatsuma, director of research and development at the center. “This is a divine mission for Japan’s robot engineers.” “

by Martin Fackler, The New York Times

source with photos, video and internal links

Fukushima evacuee to tell UN that Japan violated human rights — The Guardian

” A nuclear evacuee from Fukushima will claim Japan’s government has violated the human rights of people who fled their homes after the 2011 nuclear disaster, in testimony before the UN in Geneva this week.

Mitsuko Sonoda, who voluntarily left her village with her husband and their 10-year-old son days after three reactors at the Fukushima Daiichi nuclear power plant went into meltdown, will tell the UN human rights council that evacuees face financial hardship and are being forced to return to neighbourhoods they believe are still unsafe almost seven years after the disaster.

“We feel abandoned by the Japanese government and society,” Sonoda, who will speak at the council’s pre-session review of Japan on Thursday, told the Guardian.

An estimated 27,000 evacuees who, like Sonoda, were living outside the mandatory evacuation zone when the meltdown occurred, had their housing assistance withdrawn this March, forcing some to consider returning to their former homes despite concerns over radiation levels.

In addition, as the government attempts to rebuild the Fukushima region by reopening decontaminated neighbourhoods that were once no-go areas, tens of thousands of evacuees who were ordered to leave will lose compensation payments and housing assistance in March next year.

The denial of financial aid has left many evacuees facing a near-impossible choice: move back to homes they fear are unsafe, or face more financial hardship as they struggle to build lives elsewhere without state help.

“People should be allowed to choose whether or not to go back to their old homes, and be given the financial means to make that choice,” said Kendra Ulrich, senior global energy campaigner for Greenpeace Japan.

“If they are being put under economic pressure to return, then they are not in a position to make an informed decision. This UN session is about pressuring the Japanese government to do the right thing.”

Evacuees are being encouraged to return to villages and towns near the Fukushima plant despite evidence that some still contain radiation “hot spots”.

In Iitate village, where the evacuation order was lifted this March, much of the surrounding forests remain highly radioactive, although homes, schools and other public buildings have been declared safe as part of an unprecedented decontamination effort.

“You could call places like Iitate an open-air prison,” said Ulrich. “The impact on people’s quality of life will be severe if they move back. Their lives are embedded in forests, yet the environment means they will not be allowed to enter them. Forests are impossible to decontaminate.”

After months of moving around, Sonoda and her family settled in Kyoto for two years, where local authorities provided them with a rent-free apartment. They have been living in her husband’s native England for the past four years.

“We’ve effectively had to evacuate twice,” said Sonoda, who works as a freelance translator and Japanese calligraphy tutor. “My son and I really struggled at first … we didn’t want to leave Japan.”

Concern over food safety and internal radiation exposure convinced her that she could never return to Fukushima, aside from making short visits to see relatives. “It’s really sad, because my village is such a beautiful place,” she said. “We had a house and had planned to retire there.”

The evacuations have forced families to live apart, while parents struggle to earn enough money to fund their new accommodation and keep up mortgage payments on their abandoned homes.

“Stopping housing support earlier this year was an act of cruelty,” Sonoda said. “Some of my friends had to go back to Fukushima even though they didn’t want to.”

Greenpeace Japan, which is assisting Sonoda, hopes her testimony will be the first step in building international pressure on Japan’s government to continue offering financial help to evacuees and to reconsider its resettlement plan.

It has called on the government to declare Fukushima neighbourhoods unsafe until atmospheric radiation is brought to below one millisievert (mSv) a year, the maximum public exposure limit recommended by the International Commission on Radiological Protection.

While 1 mSv a year remains the government’s long-term target, it is encouraging people to return to areas where radiation levels are below 20 mSv a year, an annual exposure limit that, internationally, applies to nuclear power plant workers.

“Why should people, especially women and children, have to live in places where the radiation level is 20 times the international limit?” Sonoda said. “The government hasn’t given us an answer.” ”

by The Guardian

source with internal links

Radiation levels exceeding state-set limit found on grounds of five Chiba schools — The Japan Times

” Radiation levels exceeding the government-set safety limit of 0.23 microsieverts per hour have been detected on the grounds of five schools in the city of Kashiwa, Chiba Prefecture, the prefectural board of education said Monday.

Between late April and mid-May, the board officials detected radiation levels of up to 0.72 microsieverts per hour in certain areas of the schools, including Kashiwa High School and Kashiwa Chuo High School. The areas — including soil near a school swimming pool and drainage gutters — are not frequented by students, but the board closed them off and will work to quickly decontaminate them, the officials said.

Kashiwa has been one of the areas with high radiation readings since the 2011 nuclear disaster at Tokyo Electric Power Company Holdings Inc.’s Fukushima No. 1 power plant.

According to NHK, the board of education had been checking the soil on the school premises in Kashiwa after radiation levels beyond the state limit were detected in shrubbery near the city’s public gymnasium. The board will announce the results of radiation tests at other schools in the prefecture around the end of July, NHK reported. ”

by Kyodo, The Japan Times

source

High levels of cesium radioactive material migrating down into soil around Fukushima — Global Research

” High levels of radioactive cesium remain in the soil near the Fukushima Daiichi nuclear power plant and these radionuclides have migrated at least 5 centimeters down into the ground at several areas since the nuclear accident five years ago, according to preliminary results of a massive sampling project being presented at the JpGU-AGU joint meeting in Chiba, Japan.

In 2016, a team of more than 170 researchers from the Japanese Geoscience Union and the Japan Society of Nuclear and Radiochemical Sciences conducted a large-scale soil sampling project to determine the contamination status and transition process of radioactive cesium five years after a major earthquake and tsunami caused a nuclear accident at the Fukushima Daiichi plant.

The team collected soil samples at 105 locations up to 40 kilometers (25 miles) northwest of the Fukushima Daiichi nuclear power plant in the “difficult-to-return” zone where entry is prohibited. The project seeks to understand the chemical and physical forms of radionuclides in the soil and their horizontal and vertical distribution.

The Japanese government has monitored the state of radioactive contamination in the area near the plant since the 2011 accident by measuring the air dose rate, but scientists can only determine the actual state of contamination in the soil and its chemical and physical forms by direct soil sampling, said Kazuyuki Kita, a professor at Ibaraki University in Japan, who is one of the leaders of the soil sampling effort.

Understanding the radionuclides’ chemical and physical forms helps scientists understand how long they could stay in the soil and the risk they pose to humans, plants and animals, Kita said. The new information could help in assessing the long-term risk of the radionuclides in the soil, and inform decontamination efforts in heavily contaminated areas, according to Kita, one of several researchers will present the team’s preliminary results at the JpGU-AGU joint meeting next week.

Preliminary results show high levels radioactive cesium are still present in the soil near the plant. The levels of radiation are more than 90 percent, on average, of what was found immediately following the accident, according to Kita.

Most of the radiocesium in the soil was found near the surface, down to about 2 centimeters, immediately following the 2011 accident. Five years later, at several sampling points, one-third to one-half of the radiocesium has migrated deeper into the soil, according to Kita. Preliminary results show the radiocesium moved about 0.3 centimeters per year, on average, deeper into the soil and soil samples show the radiocesium has penetrated at least 5 centimeters into the ground at several areas, according to Kita.

The team plans to analyze samples taken at greater depths to see if the radiocesium has migrated even further, he said.

“Most of the radioactive cesium remains after five years, but some parts of the radioactive cesium went from the surface to deeper soil,” he said.

Knowing how much radioactive contamination has stayed on the surface and how deep it has penetrated into the soil helps estimate the risk of the contaminants and determine how much soil should be removed for decontamination. The preliminary results suggest decontamination efforts should remove at least the top 6 to 8 centimeters of soil, Kita said.

The preliminary data also show there are insoluble particles with very high levels of radioactivity on the surface of the soil. Debris from the explosion fused with radiocesium to form small glass particles a few microns to 100 microns in diameter that remain on the ground, according to Kita. The team is currently trying to determine how many of these radiocesium glass particles exist in areas near the nuclear plant, he said.

“We are afraid that if such high radioactive balls remain on the surface, that could be a risk for the environment,” Kita said. “If the radioactivity goes deep into the soil, the risk for people in the area decreases but we are afraid the high radioactive balls remain on the surface.” “

by Nancy Bompey, Global Research

source

Six years after Fukushima, much of Japan has lost faith in nuclear power — The Conversation

” Six years have passed since the Fukushima nuclear disaster on March 11, 2011, but Japan is still dealing with its impacts. Decommissioning the damaged Fukushima Daiichi nuclear plant poses unprecedented technical challenges. More than 100,000 people were evacuated but only about 13 percent have returned home, although the government has announced that it is safe to return to some evacuation zones.

In late 2016 the government estimated total costs from the nuclear accident at about 22 trillion yen, or about US$188 billion – approximately twice as high as its previous estimate. The government is developing a plan under which consumers and citizens will bear some of those costs through higher electric rates, taxes or both.

The Japanese public has lost faith in nuclear safety regulation, and a majority favors phasing out nuclear power. However, Japan’s current energy policy assumes nuclear power will play a role. To move forward, Japan needs to find a new way of making decisions about its energy future.

Uncertainty over nuclear power

When the earthquake and tsunami struck in 2011, Japan had 54 operating nuclear reactors which produced about one-third of its electricity supply. After the meltdowns at Fukushima, Japanese utilities shut down their 50 intact reactors one by one. In 2012 then-Prime Minister Yoshihiko Noda’s government announced that it would try to phase out all nuclear power by 2040, after existing plants reached the end of their 40-year licensed operating lives.

Now, however, Prime Minister Shinzo Abe, who took office at the end of 2012, says that Japan “cannot do without” nuclear power. Three reactors have started back up under new standards issued by Japan’s Nuclear Regulation Authority, which was created in 2012 to regulate nuclear safety. One was shut down again due to legal challenges by citizens groups. Another 21 restart applications are under review.

In April 2014 the government released its first post-Fukushima strategic energy plan, which called for keeping some nuclear plants as baseload power sources – stations that run consistently around the clock. The plan did not rule out building new nuclear plants. The Ministry of Economy, Trade and Industry (METI), which is responsible for national energy policy, published a long-term plan in 2015 which suggested that nuclear power should produce 20 to 22 percent of Japan’s electricity by 2030.

Meanwhile, thanks mainly to strong energy conservation efforts and increased energy efficiency, total electricity demand has been falling since 2011. There has been no power shortage even without nuclear power plants. The price of electricity rose by more than 20 percent in 2012 and 2013, but then stabilized and even declined slightly as consumers reduced fossil fuel use.

Japan’s Basic Energy Law requires the government to release a strategic energy plan every three years, so debate over the new plan is expected to start sometime this year.

Public mistrust

The most serious challenge that policymakers and the nuclear industry face in Japan is a loss of public trust, which remains low six years after the meltdowns. In a 2015 poll by the pro-nuclear Japan Atomic Energy Relations Organization, 47.9 percent of respondents said that nuclear energy should be abolished gradually and 14.8 percent said that it should be abolished immediately. Only 10.1 percent said that the use of nuclear energy should be maintained, and a mere 1.7 percent said that it should be increased.

Another survey by the newspaper Asahi Shimbun in 2016 was even more negative. Fifty-seven percent of the public opposed restarting existing nuclear power plants even if they satisfied new regulatory standards, and 73 percent supported a phaseout of nuclear power, with 14 percent advocating an immediate shutdown of all nuclear plants.

Who should pay to clean up Fukushima?

METI’s 22 trillion yen estimate for total damages from the Fukushima meltdowns is equivalent to about one-fifth of Japan’s annual general accounting budget. About 40 percent of this sum will cover decommissioning the crippled nuclear reactors. Compensation expenses account for another 40 percent, and the remainder will pay for decontaminating affected areas for residents.

Under a special financing scheme enacted after the Fukushima disaster, Tepco, the utility responsible for the accident, is expected to pay cleanup costs, aided by favorable government-backed financing. However, with cost estimates rising, the government has proposed to have Tepco bear roughly 70 percent of the cost, with other electricity companies contributing about 20 percent and the government – that is, taxpayers – paying about 10 percent.

This decision has generated criticism both from experts and consumers. In a December 2016 poll by the business newspaper Nihon Keizai Shimbun, one-third of respondents (the largest group) said that Tepco should bear all costs and no additional charges should be added to electricity rates. Without greater transparency and accountability, the government will have trouble convincing the public to share in cleanup costs.

Other nuclear burdens: Spent fuel and separated plutonium

Japanese nuclear operators and governments also must find safe and secure ways to manage growing stockpiles of irradiated nuclear fuel and weapon-usable separated plutonium.

At the end of 2016 Japan had 14,000 tons of spent nuclear fuel stored at nuclear power plants, filling about 70 percent of its onsite storage capacity. Government policy calls for reprocessing spent fuel to recover its plutonium and uranium content. But the fuel storage pool at Rokkasho, Japan’s only commercial reprocessing plant, is nearly full, and a planned interim storage facility at Mutsu has not started up yet.

The best option would be to move spent fuel to dry cask storage, which withstood the earthquake and tsunami at the Fukushima Daiichi nuclear plant. Dry cask storage is widely used in many countries, but Japan currently has it at only a few nuclear sites. In my view, increasing this capacity and finding a candidate site for final disposal of spent fuel are urgent priorities.

Japan also has nearly 48 tons of separated plutonium, of which 10.8 tons are stored in Japan and 37.1 tons are in France and the United Kingdom. Just one ton of separated plutonium is enough material to make more than 120 crude nuclear weapons.

Many countries have expressed concerns about Japan’s plans to store plutonium and use it in nuclear fuel. Some, such as China, worry that Japan could use the material to quickly produce nuclear weapons.

Now, when Japan has only two reactors operating and its future nuclear capacity is uncertain, there is less rationale than ever to continue separating plutonium. Maintaining this policy could increase security concerns and regional tensions, and might spur a “plutonium race” in the region.

As a close observer of Japanese nuclear policy decisions from both inside and outside of the government, I know that change in this sector does not happen quickly. But in my view, the Abe government should consider fundamental shifts in nuclear energy policy to recover public trust. Staying on the current path may undermine Japan’s economic and political security. The top priority should be to initiate a national debate and a comprehensive assessment of Japan’s nuclear policy. ”

by The Conversation

source with graphics and internal links