Radioactive water at Fukushima should be stored not dumped — Beyond Nuclear International

” Last week, Japan’s then environment minister, Yoshiaki Harada, made news with a pronouncement that wasn’t news. The storage tanks at the stricken Fukushima Daiichi nuclear site, filled with radioactive water, were reaching capacity. By 2022 there would be no room for more tanks on the present site. Japan would then have to dump the radioactive water stored in the tanks into the Pacific Ocean, he said.

Although likely unrelated to those remarks, a day later, Prime Minister Shinzo Abe dispatched 19 of his cabinet ministers, including Harada. Harada was replaced as environment minister by rising star, Shinjiro Koizumi, the son of former primer minister, Junichiro Koizumi. Both father and son are opposed to nuclear energy, and on his first day in office, the younger Koizumi told reporters that he believed Japan should end its use of nuclear energy and close its nuclear power plants.

“I would like to study how we scrap them, not how to retain them,” Reuters reported him saying. This is a surprising position from someone inside the fervently pro-nuclear Abe government and it remains to be seen whether he will be allowed to translate his position into policy.

Dumping Fukushima Daiichi’s accumulated radioactive water has long been the plan proposed by Tepco, the site owner. Fukushima fishermen, along with some scientists and a number of NGOs from around the world, continue to object.

Cooling water is needed at the Fukushima site because, when Units 1, 2 and 3 lost power, they also lost the flow of reactor coolant, causing their cores to overheat. The fuel rods then melted, and molten fuel dripped down and burned through the pressure vessels, pooling in the primary containment vessels. Units 1, 3 and 4 also suffered hydrogen explosions. Each day, about 200 metric tons of cooling water is used to keep the three melted cores cool, lest they once more go critical. Eventually the water becomes too radioactive and thermally hot to be re-used, and must be discarded and stored in the tanks.

As Greenpeace International (GPI) explained in remarks and questions submitted during a consultative meeting held by the International Maritime Organization in August 2019:

“Since 2011, in order to cool the molten cores in the Tokyo Electric Power Company Fukushima Daiichi reactor units 1-3, water is continuously pumped through the damaged Reactor Pressure Vessels (RPVs) and circulated through reactor buildings, turbine buildings, the Process Main Building and the “High Temperature Incinerator Building”  and water treatment systems.

“As a result, the past eight years has seen a relentless increase in the volume of radioactive contaminated water accumulating on site. As of 4 July 2019, the total amount of contaminated water held in 939 storage tanks at the Fukushima Daiichi plant (units 1-4) was 1,145,694 m3 (tonnes). The majority of this, 1,041,710 m3, is contaminated processed water. In the year to April 2019, approximately 180 m3/day of water was being circulated into the RPVs of units 1-3.”

In addition to the cooling water, the tanks also house water that has run down from the nearby mountains, at a rate of about 100 tons each day. This water flows onto the site and seeps into the reactor buildings. There, it becomes radioactively contaminated and also must be collected and stored, to prevent it from flowing on down into the sea.

The water tank crisis is just one of multiple and complex problems at the Fukushima Daiichi site, including the eventual need to extract the molten fuel debris from inside the stricken reactors. Decommissioning cannot begin until the water storage tanks are removed.

Tepco has tried to mitigate the radioactive water problem in a number of ways. The infamous $320 million ice wall was an attempt to freeze and block inflow, but has had mixed results and has worked only intermittently. Wells were dug to try to divert the runoff water so it does not pick up contamination. The ice wall has reportedly reduced the flow of groundwater somewhat, but only down from 500 tons a day to about 100 tons.

In anticipation of dumping the tank water into the Pacific Ocean, Tepco has deployed an Advanced Liquid Processing System that the company claims can remove 62 isotopes from the water — all except tritium, which is radioactive hydrogen and therefore cannot be filtered out of water. (Tritium is routinely discharged by operating commercial nuclear power plants).

But, like the ice wall, the filtration system has also been plagued by malfunctions. According to GPI, Tepco admitted only last year that the system had “failed to reduce radioactivity to levels below the regulatory limit permissible for ocean disposal” in at least 80% of the tanks’ inventory. Indeed, said GPI, “the levels of Strontium-90 are more than 100 times the regulatory standard according to TEPCO, with levels at 20,000 times above regulations in some tanks.”

The plan to dump the water has raised the ire of South Korea, whose fish stocks would likely also be contaminated. And it has introduced the question of whether such a move is a violation of The Conventions of the Rights of the Child and the Universal Declaration of Human Rights, as was raised in a joint written statement by the International Association of Democratic Lawyers and Greenpeace International, before the UN Human Rights Council currently in session.

So what else could or should Tepco do, if not dump the water offshore and into the ocean? A wide consensus amongst scientific, environmental and human rights groups is that on-site storage for the indefinite future is the only acceptable option, while research must continue into possible ways to extract all of the radioactive content, including tritium.

Meanwhile, a panel of experts says it will examine a number of additional but equally problematic choices, broadly condensed into four options (each with some variations — to  dilute or not to dilute etc):

  • Ground (geosphere) injection (which could bring the isotopes in contact with groundwater);
  • Vapor release (which could infiltrate weather patterns and return as fallout);
  • Releasing it as hydrogen (it would still contain tritium gas); and
  • Solidification followed by underground burial (for which no safe, permanent storage environment has yet been found, least of all in earthquake-prone Japan).

Arnie Gundersen of Fairewinds, recommends a chemical injection processes (drilling mud) — also used by the oil industry — to stop the flow of water onto the site entirely. But he says Japan has never considered this option. GPI contends that Japan has never seriously researched any of the alternatives, sticking to the ocean dumping plan, the cheapest and fastest “fix.”

All of this mess is of course an inevitable outcome of the choice to use nuclear power in the first place. Even without an accident, no safe, permanent storage solution has been found for the high-level radioactive waste produced through daily operation of commercial nuclear power plants, never mind as the result of an accident.

According to Dr. M.V. Ramana, by far the best solution is to continue to store the radioactive water, even if that means moving some of the storage tanks to other locations to make more room for new ones at the nuclear site. The decision to dump the water, Ramana says, is in line with Abe’s attempts to whitewash the scene before the 2020 Tokyo Olympics and claim, as he has publicly in the past, that everything at Fukushima is “under control.” (Baseball and softball games will be played in Fukushima Prefecture and the torch relay will start there, all in an effort to pretend there are no dangerous nuclear after-effects remaining in the area.)

“The reason that they keep saying they need to release it is because they might have to move some of this offsite and that goes against the Abe government’s interest in creating the perception that Fukushima is a closed chapter,” Ramana wrote in an email. “So it is a political decision rather than a technical one.”

As with all things nuclear, there are diverging views on the likely impact to the marine environment and to human health, from dumping Fukushima’s radioactive water into the ocean. These run the gamut from “a little tritium won’t hurt you” to “the Pacific Ocean is dead thanks to Fukushima” — both of which are wildly untrue. (Tritium can bind organically inside the body, irradiating that person or animal from within. The many problems in the Pacific began long before Fukushima and are likely caused by numerous compounding factors, including warming and pollution, with Fukushima adding to the existing woes.)

What is fact, however, is that scientists have found not only the presence of isotopes such as cesium in fish they tested, but also in ocean floor sediment. This latter has the potential to serve as a more long-term source of contamination up the food chain.

But it is also important to remember that if this radioactive water is dumped, it is not an isolated event. Radioactive contamination in our oceans is already widespread, a result of years of atmospheric atomic tests. As was reported earlier this year, scientists studying deep-sea amphipods, retrieved from some of the deepest trenches in the ocean — including the Mariana Trench which reaches 36,000 feet below sea-level and is deeper than Mount Everest is high — detected elevated levels of carbon-14 in these creatures.

“The levels closely matched abundances found near the surface of the ocean, where the amount of carbon-14 is higher than usual thanks to nuclear bomb tests conducted more than half a century ago,” reported Smithsonian Magazine.

Weidong Sun, co-author of the resulting study, told Smithsonian Magazine that “Biologically, [ocean] trenches are taken to be the most pristine habitats on Earth”.

How chilling, then, to realize that our radioactive irresponsibility has reached the lowest depths, affecting creatures far removed from our rash behaviors.

Consequently, the decision by the Japanese government to release yet more radioactive contamination into our oceans must be viewed not as a one-off act of desperation, but as a contribution to cumulative contamination. This, added to the twin tragedies of climate crisis-induced ocean warming and plastics and chemicals pollution, renders it one more crime committed on the oceans, ourselves and all living things. And it reinforces the imperative to neither continue nor increase our reckless use of nuclear power as an electricity source. ”

by Linda Pentz Gunter, Beyond Nuclear International

source with photos and links

Advertisements

Japan will have to dump radioactive water into Pacific, minister says — The Guardian

” The operator of the ruined Fukushima Daiichi nuclear power plant will have to dump huge quantities of contaminated water from the site directly into the Pacific Ocean, Japan’s environment minister has said – a move that would enrage local fishermen.

More than 1 million tonnes of contaminated water has accumulated at the plant since it was struck by a tsunami in March 2011, triggering a triple meltdown that forced the evacuation of tens of thousands of residents.

Tokyo Electric Power (Tepco) has struggled to deal with the buildup of groundwater, which becomes contaminated when it mixes with water used to prevent the three damaged reactor cores from melting.

Tepco has attempted to remove most radionuclides from the excess water, but the technology does not exist to rid the water of tritium, a radioactive isotope of hydrogen. Coastal nuclear plants commonly dump water that contains tritium into the ocean. It occurs in minute amounts in nature.

Tepco admitted last year that the water in its tanks still contained contaminants beside tritium.

Currently, more than 1m tonnes of contaminated water is held in almost 1,000 tanks at the Fukushima Daiichi site, but the utility has warned that it will run out of tank space by the summer of 2022.

“The only option will be to drain it into the sea and dilute it,” Yoshiaki Harada told a news briefing in Tokyo on Tuesday. “The whole of the government will discuss this, but I would like to offer my simple opinion.”

No decision on how to dispose of the water will be made until the government has received a report from a panel of experts. Other options include vaporising the liquid or storing it on land for an extended period.

Harada did not say how much water would need to be discharged into the ocean.

One recent study by Hiroshi Miyano, who heads a committee studying the decommissioning of Fukushima Daiichi at the Atomic Energy Society of Japan, said it could take 17 years to discharge the treated water after it has been diluted to reduce radioactive substances to levels that meet the plant’s safety standards.

Any decision to dispose of the waste water into the sea would anger local fishermen, who have spent the past eight years rebuilding their industry.

Nearby South Korea has also voiced concern over the impact it would have on the reputation of its own seafood.

Last month, Seoul summoned a senior Japanese embassy official to explain how Fukushima Daiichi’s waste water would be dealt with.

Ties between the north-east Asian nations are already at a low ebb following a compensation dispute over Koreans forced to work in Japanese factories during the second world war.

The government spent 34.5 bn yen (£260m) to build a frozen underground wall to prevent groundwater reaching the three damaged reactor buildings. The wall, however, has succeeded only in reducing the flow of groundwater from about 500 tonnes a day to about 100 tonnes a day.

Japan has come under renewed pressure to address the contaminated water problem before Tokyo hosts the Olympics and Paralympics next summer.

Six years ago during the city’s bid for the games, the prime minister, Shinzo Abe, assured the international community that the situation was “under control”.

by The Guardian

source

Local Fury and Health Concerns as Japan plans to dump a million tons of radioactive Fukushima water into ocean — Common Dreams

” In a move that has sparked outrage from local residents and dire health warnings from environmentalists, the Japanese government is reportedly planning to release 1.09 million tons of water from the Fukushima Dai-ichi nuclear plant into the Pacific Ocean despite evidence that it contains “radioactive material well above legally permitted levels.”

While both the Japanese government and Tokyo Electric Power Co. (Tepco)—the company that runs the Fukushima Dai-ichi plant—have claimed that radioactive material in the water has been reduced to undetectable amounts and that only “safe levels of tritium” remain, documents obtained by the London-based Telegraph suggest that the cleaning system being used to decontaminate the water “has consistently failed to eliminate a cocktail of other radioactive elements, including iodine, ruthenium, rhodium, antimony, tellurium, cobalt, and strontium.”

“The government is running out of space to store contaminated water that has come into contact with fuel that escaped from three nuclear reactors after the plant was destroyed in the March 2011 earthquake and tsunami that struck northeast Japan,” the Telegraph reported. “Its plan to release the approximately 1.09 million tons of water currently stored in 900 tanks into the Pacific has triggered a fierce backlash from local residents and environmental organizations, as well as groups in South Korea and Taiwan fearful that radioactivity from the second-worst nuclear disaster in history might wash up on their shores.”

One document the Telegraph obtained from the government body charged with responding to the 2011 Fukushima disaster reportedly indicates that the Japanese government is perfectly aware that the Advanced Liquid Processing System (ALPS) is failing to eliminate radioactive materials from the water stored at the Fukushima site, despite its claims to the contrary.

Last September, the Telegraph notes, “Tepco was forced to admit that around 80 percent of the water stored at the Fukushima site still contains radioactive substances above legal levels after the Ministry of Economy, Trade, and Industry held public hearings in Tokyo and Fukushima at which local residents and fishermen protested against the plans.”

Shaun Burnie, a nuclear specialist with Greenpeace, argued that even so-called “safe” levels of tritium are harmful to humans and marine life.

“Its beta particles inside the human body are more harmful than most X-rays and gamma rays,” Burnie told the Telegraph, adding that there “are major uncertainties over the long-term effects posed by radioactive tritium that is absorbed by marine life and, through the food chain, humans.”

The Japanese government’s reported plans to release the water into the Pacific despite these warnings “cannot be considered an action without risk to the marine environment and human health,” Burnie concluded. ”

by Jake Johnson, Common Dreams

source

Fukushima’a other big problem: A Million tons of radioactive water — Wired

” The tsunami-driven seawater that engulfed Japan’s Fukushima Daiichi nuclear plant has long since receded. But plant officials are still struggling to cope with another dangerous flood: the enormous amounts of radioactive water the crippled facility generates each day. More than 1 million tons of radiation-laced water is already being kept on-site in an ever-expanding forest of hundreds of hulking steel tanks—and so far, there’s no plan to deal with them.

The earthquake and tsunami that hammered Fukushima on March 11, 2011 triggered meltdowns in three of its six reactors. That left messes of intensely radioactive fuel somewhere loose in the reactor buildings—though no one knows exactly where. What is known, however, is that every day, as much as much as 150 tons of groundwater percolates into the reactors through cracks in their foundations, becoming contaminated with radioactive isotopes in the process.

To keep that water from leaking into the ground or the Pacific, Tepco, the giant utility that owns the plant, pumps it out and runs it through a massive filtering system housed in a building the size of a small aircraft hangar. Inside are arrays of seven-foot tall stainless steel tubes, filled with sand grain-like particles that perform a process called ion exchange. The particles grab on to ions of cesium, strontium, and other dangerous isotopes in the water, making room for them by spitting out sodium. The highly toxic sludge created as a byproduct is stored elsewhere on the site in thousands of sealed canisters.

This technology has improved since the catastrophe. The first filtering systems, installed just weeks after the disaster by California-based Kurion Inc. (which has since been bought by Veolia, a French resource management company), only caught cesium, a strong gamma radiation emitter that makes it the most dangerous of the isotopes in the water. The tubes in those arrays were filled with highly modified grains of naturally occurring volcanic minerals called zeolites. By 2013, the company developed entirely artificial particles—a form of titano silicate—that also grab strontium.

The filters, however, don’t catch tritium, a radioactive isotope of hydrogen. That’s a much trickier task. Cesium and strontium atoms go into solution with the water, like sugar in tea; but tritium can bond with oxygen just like regular hydrogen, rendering the water molecules themselves radioactive. “It’s one thing to separate cesium from water, but how do you separate water from water?” asks John Raymont, Kurion’s founder and now president of Veolia’s nuclear solutions group. The company claims to have developed a system that can do the job, but Tepco has so far balked at the multi-billion dollar cost.

So for now, the tritiated water is pumped into a steadily growing collection of tanks. There are already hundreds of them, and Tepco has to start building a new one every four days.

Tepco has at least reduced the water’s inflow. As much as 400 tons per day was gushing in just a couple of years ago. In an effort to keep the groundwater from getting in, Tepco has built a network of pumps, and in 2016 installed an underground “ice wall”—a $300 million subterranean fence of 30-yard-long rods through which tons of sub-zero brine is pumped, freezing the surrounding earth. All of which helps, but hasn’t solved the problem.

Tritium is far less dangerous than cesium—it emits a weaker, lower-energy form of radiation. Still, all that tritiated water can’t just be stored indefinitely. “Some of those tanks and pipes will eventually fail. It’s inevitable,” says Dale Klein, a former head of the US Nuclear Regulatory Commission who has been consulting with Tepco since the early days following the disaster. (In fact, hundreds of tons of water leaked out of the tanks in 2013 and 2014, sparking an international outcry. Tepco has since improved their design.)

Klein, among others, believes that the concentrations of tritium are low enough that the water can safely be released into the sea. “They should dilute and dispose of it,” he says. “It would be better to have a controlled release than an accidental one.”

But the notion of dumping tons of radioactive water into the ocean is understandably a tough sell. Whatever faith the Japanese public had left in Tepco took a further beating in the first couple of years after the meltdowns, when several investigations forced the company to acknowledge they had underreported the amount of radiation released during and after the disaster. Japan’s fishing industry raises a ruckus whenever the idea of dumping the tritiated water is broached; they already have to contend with import restrictions imposed by neighboring countries worried about eating contaminated fish. Japan’s neighbors including China, Korea, and Taiwan have also objected.

For now, all Tepco can do is keep building tanks, and hope that someone comes up with a solution before they run out of room—or the next earthquake hits. “

by Vince Beiser, Wired

source with internal links and photo

Move over Chernobyl, Fukushima is now officially the worst nuclear power disaster in history — CounterPunch

” The radiation dispersed into the environment by the three reactor meltdowns at Fukushima-Daiichi in Japan has exceeded that of the April 26, 1986 Chernobyl catastrophe, so we may stop calling it the “second worst” nuclear power disaster in history. Total atmospheric releases from Fukushima are estimated to be between 5.6 and 8.1 times that of Chernobyl, according to the 2013 World Nuclear Industry Status Report. Professor Komei Hosokawa, who wrote the report’s Fukushima section, told London’s Channel 4 News then, “Almost every day new things happen, and there is no sign that they will control the situation in the next few months or years.”

Tokyo Electric Power Co. has estimated that about 900 peta-becquerels have spewed from Fukushima, and the updated 2016 TORCH Report estimates that Chernobyl dispersed 110 peta-becquerels. (A Becquerel is one atomic disintegration per second. The “peta-becquerel” is a quadrillion, or a thousand trillion Becquerels.)

Chernobyl’s reactor No. 4 in Ukraine suffered several explosions, blew apart and burned for 40 days, sending clouds of radioactive materials high into the atmosphere, and spreading fallout across the whole of the Northern Hemisphere — depositing cesium-137 in Minnesota’s milk.

The likelihood of similar or worse reactor disasters was estimated by James Asselstine of the Nuclear Regulatory Commission (NRC), who testified to Congress in 1986: “We can expect to see a core meltdown accident within the next 20 years, and it … could result in off-site releases of radiation … as large as or larger than the releases … at Chernobyl. Fukushima-Daiichi came 25 years later.

Contamination of soil, vegetation and water is so widespread in Japan that evacuating all the at-risk populations could collapse the economy, much as Chernobyl did to the former Soviet Union. For this reason, the Japanese government standard for decontaminating soil there is far less stringent than the standard used in Ukraine after Chernobyl.

Fukushima’s Cesium-137 Release Tops Chernobyl’s

The Korea Atomic Energy Research (KAER) Institute outside of Seoul reported in July 2014 that Fukushima-Daiichi’s three reactor meltdowns may have emitted two to four times as much cesium-137 as the reactor catastrophe at Chernobyl.

To determine its estimate of the cesium-137 that was released into the environment from Fukushima, the Cesium-137 release fraction (4% to the atmosphere, 16% to the ocean) was multiplied by the cesium-137 inventory in the uranium fuel inside the three melted reactors (760 to 820 quadrillion Becquerel, or Bq), with these results:

Ocean release of cesium-137 from Fukushima (the worst ever recorded): 121.6 to 131.2 quadrillion Becquerel (16% x 760 to 820 quadrillion Bq). Atmospheric release of Cesium-137 from Fukushima: 30.4 to 32.8 quadrillion Becquerel (4% x 760 to 820 quadrillion Bq).

Total release of Cesium-137 to the environment from Fukushima: 152 to 164 quadrillion Becquerel. Total release of Cesium-137 into the environment from Chernobyl: between 70 and 110 quadrillion Bq.

The Fukushima-Daiichi reactors’ estimated inventory of 760 to 820 quadrillion Bq (petabecquerels) of Cesium-137 used by the KAER Institute is significantly lower than the US Department of Energy’s estimate of 1,300 quadrillion Bq. It is possible the Korean institute’s estimates of radioactive releases are low.

In Chernobyl, 30 years after its explosions and fire, what the Wall St. Journal last year called “the $2.45 billion shelter implementation plan” was finally completed in November 2016. A huge metal cover was moved into place over the wreckage of the reactor and its crumbling, hastily erected cement tomb. The giant new cover is 350 feet high, and engineers say it should last 100 years — far short of the 250,000-year radiation hazard underneath.

The first cover was going to work for a century too, but by 1996 was riddled with cracks and in danger of collapsing. Designers went to work then engineering a cover-for-the-cover, and after 20 years of work, the smoking radioactive waste monstrosity of Chernobyl has a new “tin chapeau.” But with extreme weather, tornadoes, earth tremors, corrosion and radiation-induced embrittlement it could need replacing about 2,500 times. ”

by John LaForge, CounterPunch

source with article sources listed at the bottom of the page

Regulator urges Tepco to release treated radioactive water from damaged Fukushima No. 1 nuclear plant into the sea — The Japan Times

” A decision should be made sometime this year over whether to release into the sea water containing radioactive tritium from the crisis-hit Fukushima No. 1 nuclear plant, the chief of Japan’s nuclear regulator said Thursday, emphasizing it would pose no danger to human health.

“We will face a new challenge if a decision (about the release) is not made this year,” Nuclear Regulation Authority Chairman Toyoshi Fuketa told Naraha Mayor Yukiei Matsumoto, referring to the more than 1 million tons of coolant water and groundwater that has accumulated at the crippled facility. Naraha is located close to the Fukushima No.1 plant.

Fuketa said releasing the water into the sea after dilution is the only solution, saying “it is scientifically clear that there will be no impact on marine products or to the environment.”

Currently, Fukushima plant operator Tokyo Electric Power Company Holdings Inc. regularly filters contaminated coolant water and ground water from the damaged plant. The processed water is stored in hundreds of water tanks set up within the plant’s compound.

Dangerous radioactive materials are removed during filtration, but tritium — which is difficult to separate from water but relatively harmless to human health — remains.

“(Tepco) has been building new tanks, but it will eventually run out of land,” an NRA official later told The Japan Times.

With limited storage space for water tanks, observers warn that tritium could start leaking from the Fukushima plant.

The nuclear regulator’s chief underlined the need for the government and Tepco to make a decision quickly, saying, “It will take two or three years to prepare for the water’s release into the sea.”

At other nuclear power plants, water containing tritium is routinely dumped into the sea after it is diluted. The regulator has been calling for the release of the water after diluting it to a density lower than standards set by law.

According to the NRA, an average pressured-water reactor for commercial use in Japan usually dumps 60 trillion becquerels of tritium a year into the sea.

Local fishermen are, however, worried about the negative impact from the water discharge — in particular the effect of groundless rumors regarding the safety of marine life near the Fukushima plant. In the face of their opposition, Tepco has not yet reached a decision on how to deal with the stored water.

At the Fukushima plant contaminated water is building up partly because groundwater is seeping into the reactor buildings and mixing with water that has been made radioactive in the process of cooling the damaged reactors.

According to the NRA, there were 650 water tanks within the compound at the Fukushima No. 1 plant as of last month.

The density of tritium in the water ranges from 1 million to 5 million becquerels per liter. Legal restrictions require a nuclear power plant to dump tritium-tainted water after diluting it to 60,000 becquerels per liter, according to the NRA.

On March 11, 2011, tsunami inundated the six-reactor plant, which is located on ground 10 meters above sea level, and flooded its power supply facilities.

Reactor cooling systems were crippled and the Nos. 1 to 3 reactors suffered fuel meltdowns in the world’s worst nuclear catastrophe since the 1986 Chernobyl disaster. ”

by Kyodo, The Japan Times

source