Doctors’ prescription for the Tokyo Olympics — IPPNW, Beyond Nuclear International

Statement of IPPNW Germany regarding participation in the Olympic Games in Japan

In July 2020, the Olympic Games will start in Japan. Young athletes from all over the world have been preparing for these games for years and millions of people are looking forward to this major event.

We at IPPNW Germany are often asked whether it is safe to travel to these Olympic Games in Japan either as a visitor or as an athlete or whether we would advise against such trips from a medical point of view. We would like to address these questions.

To begin with, there are many reasons to be critical of the Olympic Games in general: the increasing commercialization of sports, the lack of sustainability of sports venues, doping scandals, the waste of valuable resources for an event that only takes place for several weeks and corruption in the Olympic organizations to name just a few. However, every four years, the Olympic Games present a unique opportunity for many young people from all over the world to meet other athletes and to celebrate a fair sporting competition – which was the initial vision of the Olympic movement. Also, the idea of Olympic peace and mutual understanding between nations and people is an important aspect for us as a peace organization.

Fukushima…and no end in sight

Regarding the Olympic Games in Japan, another factor comes into play: the Japanese government is using the Olympic Games to deflect from the ongoing nuclear catastrophe in the Northeast of the country.

The government wants people to think that the situation in Fukushima is under control and people in the region are safe from radioactive contamination. The president of the German Olympic Sports Association, Alfons Hörmann, recently went so far as to say that “the regions close to the Olympic Games are safe from environmental disasters”.

Of course, this is an untenable assertion for a region with extremely high seismic activity. Regarding the situation around the destroyed nuclear reactors in Fukushima, the situation is far from “under control” even today. External cooling water has to be continuously circulated through the ruins of the damaged reactors. Inside, life-threatening radiation doses still prevail. Large parts of the contaminated cooling-water is still flowing into the sea or leaches into groundwater despite major efforts by the Japanese authorities to contain it. The rest of the radioactive wastewater is being stored in huge tanks on site. Their contamination with hazardous radioisotopes like Strontium- 90 presents an ongoing threat to the region.

In December of 2018, data regarding thyroid tests were published. The incidence of thyroid cancer among tested children in Fukushima is 15 times higher than the Japanese average for this age bracket.

We are also seeing a distinct geographic distribution, with a significantly higher incidence of thyroid cancer in the most heavily contaminated regions.

With each storm, radioactive particles from the forests and mountains are brought back to the villages and cities – even to those previously decontaminated. International regulations stipulate that the population should not be exposed to more than one millisievert of additional radiation after a nuclear accident. In areas around Fukushima already earmarked for resettlement, the population will be exposed to radiation dosages that can range up to 20 mSv. As an organization of physicians, we have repeatedly pointed out the resulting health risks for the population of the affected regions, which we consider unacceptable.

While the nuclear catastrophe is a daily reality for the people living in the area and will be for many years to come, the situation for visitors is of course different. To answer the question of whether a trip to Japan or participation in the Olympic Games is acceptable from a medical point of view, a variety of aspects must be taken into consideration:

General information regarding radiation risks

Generally, the radiation exposure in the contaminated regions in Japan poses increased health risks. However, especially for short-term visits, these risks can be considered small – as long as individuals are not specifically sensitive to radiation. But it needs to be stressed that there is no threshold in radiation dose, below which it could be considered safe or without negative effects on health.

The individual disposition and the risk for a radiation-induced disease normally remains undetected and individuals themselves are often not aware of their sensitivity. Once a person falls sick, you can draw conclusions by working backward and may find increased radiation sensitivity (e.g. for breast cancer patients with the BRCA-1/2-mutation).

For pregnant women and small children, we generally recommend to refrain from intercontinental flights and to avoid visits to the contaminated areas in Japan to minimize individual radiation doses. Until today, there are still hot-spots, even in the decontaminated regions – places where radioactive particles from the Fukushima meltdowns have accumulated and were overlooked during the decontamination efforts or places that were recontaminated by rain, pollen flight or flooding. These hot-spots pose an ongoing risk for the residents of the region. Even in the greater Tokyo area, hot-spots were detected in the past.

It is important to know that even when radiation exposure limits are met, certain health risks cannot be ruled out. Exposure limits are derived from the politically acceptable risk of disease that the government thinks the population would be willing to accept. The question is not “At which dose can we expect health risks to occur?” but rather “Which health risks are still acceptable for society?”

Radioactivity in any dosage, however small, can trigger a disease – the higher the dose, the higher the risk. As with smoking and other cancer-inducing factors, there is no “safe” dose. Even natural background radioactivity can trigger diseases. While natural background radiation can mostly not be avoided, we recommend trying to avoid additional radiation exposure as best as possible in order to lower the individual risk of contracting radiation-induced diseases such as cancer.

We can only hope that there will be no further recontamination in Japan caused by storms, earthquakes, forest fires, flooding or technical failures at the damaged reactors, which could put the Olympic Games in Japan at risk.

How you travel

For most visitors, the flight to Japan and back will probably present the highest single radiation exposure. Depending on solar activity, length, height, and routing of the flight, the radiation dose for a flight from Europe to Japan is between 45 and 110 microsieverts (μSv) per flight – about the same dose you are exposed to during a normal chest x-ray. The exact radiation dose resulting from a flight can be calculated on the website of Munich Helmholtz-Institute.

Where you travel

While large parts of Japan have remained relatively unaffected by the Fukushima nuclear catastrophe, there are still radiation hot-spots in the prefectures of Fukushima, Tochigi, Ibaraki, Miyagi and Chiba. Inhalation or ingestion of radioactive particles with food or water poses a considerable health risk. It is not sufficient to rely on officially published dose measurements, as even previously decontaminated areas can always become recontaminated with radioactive particles from the forests and mountains around Fukushima through pollen, rains, forest fires or storms.

Some areas around Fukushima remain closed to the public due to elevated radiation levels, others have been reopened after decontamination measures were performed. In metropolitan areas, like in Fukushima City, most monitoring posts record radiation levels below 0.2 microsieverts per hour (0.2 μSv/h). This corresponds to common background values registered in other parts of the world. Background radiation is a continuous source of radiation that depends largely on the local geographical soil composition. Background radiation contributes to numerous cancers and cardiovascular diseases worldwide. Unlike background radiation, which can hardly be avoided, manmade radiation stemming from nuclear weapons testing or the nuclear industry can be confronted politically. A regularly updated map of the official monitoring post in the prefecture can be found (in Japanese) on line.

However, these official measurements need to be treated with caution since the authorities have a vested interest in systematically downplaying radiation effects and ambient dose levels. While officially published dose levels can be low, just a few meters away from the monitoring post you can find local hot-spots due to contaminated foliage, dust or pollen.

A discussion regarding the actual radiation levels in Japan is difficult since the Japanese government has forfeited a lot of trust through questionable methods, for example by installing shielding lead batteries in the measuring instruments or positioning the monitoring posts in blind spots and other protected areas. Independent monitoring posts installed by independent citizen groups often register much higher values than the official posts.

Unfortunately, for symbolic as well as political reasons, sport arenas in Fukushima were selected to hold softball and baseball competitions during the Olympic Games 2020. Even the symbolic first competitions of the Olympics are to be held here. At the same time, the competition calendar was arranged in a way to ensure that no western teams would compete here. This may sound cynical, but it seems that the organizers expected problems regarding acceptance of these sensitive venues. Consequently, European visitors and athletes will most likely not have to travel to Fukushima in order to compete or watch their team.

If people do plan to travel to Fukushima, they should avoid trips to the mountains or forests and also avoid close contact with dust, dirt, foliage, or other possibly contaminated substances. In the event of high pollen flight, forest fires or natural disasters such as earthquakes, flooding or storms, they should exercise caution. FFP-breathing masks, as well as staying indoors, can offer relative protection against inhalation of radioactive particles. Visitors should make sure to pay attention to and follow the instructions issued by local authorities.

Japan is a country with high seismic activity and earthquakes are a common occurrence, as are forest fires in the summer and storms at any time of the year. To familiarize foreign visitors with the right behavior during emergencies, the Japanese tourism agency has established a website as well as a mobile app called “Safety Tips” with up-to-date information and safety advice.

What you eat

The official dose limits for radioactivity in food in Japan are currently stricter than those in the European Union. This means that contaminated foodstuff not fit for sale on the Japanese markets could very well be sold in Europe without any special labeling or warnings. The dose limit for general foodstuff Japan is 500 Becquerel (Bq) per kilogram, while in the EU it is 600 Bq/kg. One example of this difference: blueberry jam sold in the EU had to be taken off the shelves in Japan due to excessive cesium levels (originating from the Chernobyl disaster). More information can be found here.

Food controls in Japan are rather meticulous, but naturally, it can never be guaranteed that no contaminated foodstuff reaches the shelf. The individual measurement data can be seen at www.new-fukushima.jp, but it cannot be excluded that conspicuous values were prefiltered and do not show up in the statistics. At best, this website can help understand which foodstuffs are regularly tested in Japan.

We strongly recommend avoiding products bought directly from farmers in the contaminated regions, since they are often not monitored. Also, dubious “solidarity events” specifically offering foodstuffs from the contaminated regions should be avoided. Apart from these exceptions, it can be assumed that foodstuff declared safe for sale in Japan complies with high safety standards.

Summary note

In summary, it can be said that the health risk for visitors and athletes participating in the Olympics for short periods of time is small – as long as there is no specific individual sensitivity to radiation. Pregnant women and small children should avoid long-distance flights and trips to Fukushima to protect themselves against radiation.

At the same time, we should all be aware of the continuing problems facing the population in the radioactively contaminated regions in the Northeast of Japan, who has to live with the ongoing nuclear catastrophe on a daily basis.

The Olympic Games should not be abused to distract from their fate but rather to make sure their needs, worries, and demands are properly addressed. The German affiliate of IPPNW is trying to do just that with its campaign “Tokyo 2020 – The Radioactive Olympics”.

The International Physicians for the Prevention of Nuclear War (IPPNW), was founded in 1980 and won the 1985 Nobel Peace Prize. It is a non-partisan federation of national medical groups in 64 countries, representing tens of thousands of doctors, medical students, other health workers, and concerned citizens who share the common goal of creating a more peaceful and secure world freed from the threat of nuclear annihilation.

For more on how the dispersal of “hot” radioactive particles might affect the Olympics, see the Beyond Nuclear article.

published by Beyond Nuclear International

source

Ground zero at Fukushima nuclear power plant — 60 Minutes Australia

This video by 60 Minutes Australia covers the bleak reality of the effects of both the Fukushima and Chernobyl meltdowns on the people who were evacuated in Fukushima and the future generations of children in Ukraine.

source

Fukushima Daiichi Typhoon Hagibis damage update 10.15.19 — Simply Info

SimplyInfo reported: ” TEPCO reports today that some minor landslides due to the recent typhoon were found on the north edge of the plant grounds. The impacted area was not near the reactor buildings or other critical facilities.

NHK TV reported that a total of 10 bags of contaminated soil have now been retrieved from a nearby river in Tamura City. There is still no accounting of the total missing bags. ”

by SimplyInfo: The Fukushima Project

source

Fukushima’s radioactive water crisis — Counter Currents

Here is an honest and critical look at the reality of what is happening in Japan relating to releasing tons of contaminated water into the Pacific Ocean and the coverup of radiation exposure and its related death toll. Robert Hunziker calls out the facts behind the true impact of radiation exposure on millions of Ukrainians from the Chernobyl meltdown in 1986. This begs the question, What will be the true impact of Fukushima radiation on the Japanese population, including decontamination workers, children, and future generations?

The article quotes a Greenpeace International March 8th 2019 article entitled: Japanese Government Misleading UN on Impact of Fukushima Fallout on Children, Decontamination Workers: “The Japanese government is deliberately misleading United Nations human rights bodies and experts over the ongoing nuclear crisis in areas of Fukushima… In areas where some of these decontamination workers are operating, the radiation levels would be considered an emergency if they were inside a nuclear facility.”

Read article

Fukushima’s underground ice wall keeps nuclear radiation at bay — CNET

” The intricate network of small metal pipes, capped off by six-foot-high metal scaffolding, shouldn’t stand out amid the numerous pieces of industrial equipment littered throughout the Fukushima Daiichi Nuclear Power Plant. After all, it’s a power plant.

I take a closer look, and notice spheres of ice perched upon the smaller pipes, which line the center of the structure. The facility sits at the water’s edge, and there’s a brisk breeze blowing through.

But not that brisk.

It turns out, coolant is running through the pipes, freezing the soil below and creating an impermeable ice wall that’s nearly 100 feet deep and a mile long, encircling the reactors.

It’s like a smaller-scale subterranean version of the Wall in Game of Thrones, but instead of keeping out White Walkers and wights, this line of defense keeps in a far more realistic danger: radioactive contaminants from melted-down reactors that threaten to spill into the water by Fukushima Daiichi.

Daiichi is the site of the worst nuclear disaster, which happened after an earthquake hit on March 11, 2011, triggering a tsunami that devastated the facility. Two 50-foot-high waves knocked out the power generators that were keeping three of the six reactors’ fuel rods cool, triggering explosions and meltdowns that forced more than 160,000 people to flee their homes. Many of them still haven’t returned.

I came to Fukushima to check out the robots tasked with the near-impossible task of cleaning up Fukushima Daiichi. While here, I encountered this underground wall of ice.

The structure, which cost roughly $300 million, paid for by public funds, serves as critical protection, defending the Fukushima area from one of the most radioactive hotspots in the world. While Tokyo Electric Power Co., also known as Tepco, struggles to find a way to remove radioactive material from the facility – a process the government estimates could take more than four decades – the more immediate concern is what to do with the contaminated water leaking out from the facility.

One of the solutions has been to put up (down?) this underground ice wall, which prevents much of the surrounding groundwater from getting in. And while the practice of freezing soil to create a barrier has been around for more than 150 years, the magnitude of the application that stands before me is quite literally groundbreaking.

“Nobody has taken on a project of this scale,” Hideki Yagi, general manager of Tepco’s Nuclear Power Communications Unit, tells me through an interpreter.

Ice cold

While the term “ice wall” has a colorful ring to it, engineers use the more academic-sounding term Artificial Ground Freezing. The technique came out of France in 1862 as a way to help with the construction of mine shafts before German engineer F.H. Poetsch patented it. Since then, it’s been used to aid in building underwater tunnels or vertical shafts, as well as to cut off groundwater or redirect contaminated materials.

At Fukushima, my eyes follow the path of the pipes, which stretch around the reactor building. A Tepco employee tells me that a calcium chloride solution is pumped down through a smaller inner pipe, and circulated back up a large outer pipe.

The coolant brings down the temperature of each pipe to -30 degrees Celsius, or -22 degrees Fahrenheit, and the pipes are spaced about three feet apart. The cold emanating from each one hardens the soil around it.

The point of the ice wall is to keep the groundwater that runs down from the mountains to the west from entering Fukushima Daiichi and mixing with the toxic water leaking out of the Unit 1, 2 and 3 reactors. That is,  keep the clean water on the outside of the wall, while the contaminated water stays inside.

Tepco and manufacturing partners, such as Toshiba and Mitsubishi, are working on robots to identify and determine how to clear out the radioactive materials in each of the reactors’ primary containment vessels, essentially the heart of each facility.

Until then, they need a way to slow or stop the flow of water into the facility. At least initially, Tepco wasn’t even sure if the project was feasible.

“One of the challenges was how they would inject the pipes into the earth at such a deep level without impacting the other operations around it, and whether it would work,” Yagi says.

With the wall in place, Tepco says it has been able to reduce the level of contaminated water generated from Daiichi. But a Reuters report in March 2018 found that the wall still let a fair amount of clean water in, adding to the volume of toxic water the company needs to deal with. Tepco, however, says it’s been effective in reducing the volume.

“We know this is not the end of our effort,” says a company spokesman. “We will be continuously working hard to reduce the amount of  generation of contaminated water.”

The leaky bucket

Imagine a leaky bucket that constantly needs to be filled with water. At the same time, the water from the leak needs to be collected and stored. And there’s no end in sight to this cycle.

That essentially is the problem that Tepco faces at Daiichi. The fuel rods stored in the three radioactive units constantly have to be cooled with fresh water, but leaks mean the company needs to be vigilant about keeping the tainted liquid from getting out of the facility’s grounds.

Since the accident nearly eight years ago, Tepco has collected 1.1 million tons of contaminated water in 900 tanks stored on the grounds at Daiichi. The company estimates it has enough space in the 37.7-million-square-foot facility to house an additional 270,000 tons of water, which means it would run out sometime in 2020.

“We’re conscious of the fact that we can’t keep storing more and more water,” Kenji Abe, a spokesman for Tepco’s decommissioning and decontamination unit, says through an interpreter.

Tepco has worked on several solutions to decrease the level of contaminated water generated by the facility. The company has switched from tanks sealed with bolts to welded tanks, which offer greater storage capacity and less risk of leaks. There’s a steel wall by the water to keep the contaminants from flowing into the ocean. Tepco has also covered 96 percent of the surface of most of the facility with concrete, preventing rainwater from seeping in.

Then there’s the ice wall, which has done its share of lowering the amount of contaminated water generated from the facility by keeping out most of the groundwater.

Over the past three and a half years, Tepco has seen the amount of polluted water generated fall by a quarter to just under 3,900 cubic feet of water per day, with occasional spikes during periods of rainfall.

The final element

I’m in full protective gear, including a Tyvek coverall, hardhat and full-face respirator mask, walking through one of three water treatment facilities at Daiichi. I move hastily, trying to keep up with my Tepco guides, when my suit gets snagged on an exposed bolt.

Did the suit rip? My eyes shoot back at my photographer and widen with fear. This is usually the part in an outbreak movie that dooms a key character. I look down and see the suit is still intact, and breathe a sigh of relief.

It turns out, I didn’t need to panic. The facility, called the Advanced Liquid Processing System, isn’t radioactive, although it’s designed to remove radioactive elements from the collected water. There are three such facilities, which can process a total of 70,630 cubic feet of water a day.

So far, treatment technology from partner companies like Kurion and Sarry have enabled Tepco to remove 62 of the 63 radioactive elements from the water, but one, tritium, remains.

It’s this one element, which is bonded to the water at an atomic level, that means Tepco needs to keep collecting and storing the water.

Lake Barrett, a senior adviser to Tepco who previously served as acting director of the Office of Civilian Radioactive Waste Management at the US Department of Energy, notes that reactors in China and Canada already discharge water with tritium.

“It’s fundamentally safe,” Barrett says.

But organizations such as Greenpeace have called for Tepco to keep storing the water, noting that much of the early batches of treated water far exceed safety limits for radioactive elements.

Given the sensitivities around Fukushima, Tepco must continue to store the water. A spokesman said the company isn’t planning to disperse the water. But it is one option being considered by the Japanese government, which ultimately makes the decision.

“Resolving the issue of the contaminated water is something we haven’t yet reached a final solution on,” Yagi says.

Analyzing the data

Underneath the building housing the restaurant and employee rest area is a water treatment analysis center, a super-clean area that requires us to go through numerous radiation tests and four sets of boot changes.

There are glass beakers containing sea water, groundwater and water from the ALPS facilities. Scientists walk around in silence, moving beakers from one machine to another. A dozen machines in a second room measure the gamma ray levels.

The facility was originally built underground in 2014 because it needed to be on the Daiichi site, but couldn’t be exposed to radiation because of the nature of the tests. The walls are 8 inches thick, with the more sensitive labs hardened with an additional 20 inches. The facility has grown by 16 times over the past four years as it expanded the number of workers and machines.

“No other facility in Japan can handle the amount of data and work we do here,” says a Tepco scientist working at the facility who preferred not to identify himself.

He adds that all of the data is released publicly. “That’s because society demands work with a high level of trust,” he says.

The scientist explains that Japan has set a legal radioactivity limit of 60,000 becquerel per liter of tritium. But the treated water is still at 1.7 million Bq per liter, or roughly 30 times what’s deemed safe.

So, for now, Tepco must continue collecting the water. And the ice wall continues to stand, invisible to onlookers, as one of the most important lines of defense. ”

by Roger Cheng, CNET

source with photos and a video showing how robots have been used to view melted fuel

Executives In Fukushima nuclear disaster deserve 5-year prison terms, prosecutors say — NPR

” The former chairman and two vice presidents of the Tokyo Electric Power Co. should spend five years in prison over the 2011 flooding and meltdown at the Fukushima Daiichi nuclear plant, Japanese prosecutors say, accusing the executives of failing to prevent a foreseeable catastrophe.

Prosecutors say the TEPCO executives didn’t do enough to protect the nuclear plant, despite being told in 2002 that the Fukushima facility was vulnerable to a tsunami. In March of 2011, it suffered meltdowns at three of its reactors, along with powerful hydrogen explosions.

“It was easy to safeguard the plant against tsunami, but they kept operating the plant heedlessly,” prosecutors said on Wednesday, according to The Asahi Shimbun. “That led to the deaths of many people.”

Former TEPCO Chairman Tsunehisa Katsumata, 78; former Vice President Ichiro Takekuro, 72; and former Vice President Sakae Muto, 68, face charges of professional negligence resulting in death and injury. Muto and Takekuro once led the utility’s nuclear division. All three have pleaded not guilty in Tokyo District Court, saying they could not have predicted the tsunami.

The stricken plant triggered mandatory evacuations for thousands of people. Prosecutors link 44 deaths to the incident, including a number of hospital patients who were forced to leave their facilities.

The sentencing recommendation came as prosecutors made their closing arguments on WedneTsday, more than two years after the executives were initially indicted.

The next step in the case will see a lawyer for victims and their families speak in court on Thursday. But it won’t be until March of 2019 that defense lawyers will deliver their closing arguments, according to Japan’s NHK News.

Hinting at what the defense’s argument might be, NHK cites the prosecutors saying, “the former executives later claimed that they had not been informed, and that the executives put all the blame on their subordinates.”

The case has taken a twisting journey to arrive at this point. In two instances, public prosecutors opted not to seek indictments against the three TEPCO executives. But an independent citizen’s panel disagreed, and in early 2016, prosecutors in the case — all court-appointed lawyers — secured indictments against the three former TEPCO leaders.

Both TEPCO and the Japanese government lost a class-action lawsuit in late 2017, when a court found that officials had not prepared enough for potential disaster at the Fukushima power plant. In that case, the Fukushima district court ordered payments totaling nearly $4.5 million to about 3,800 plaintiffs.

All told, around 19,000 people are estimated to have died in eastern Japan’s triple disaster that included a powerful earthquake off the coast of Tohoku, a devastating tsunami, and the worst nuclear meltdown since the Chernobyl catastrophe of 1986.

In September, Japan’s government announced the first death due to radiation that was released at the Fukushima plant.

The region is still sharply feeling the results of the calamity. As of late November, more than 30,000 people who fled the area had still not returned, Kyodo News reports. ”

by Bill Chappell, NPR

source with internal links