Fukushima nuclear plant: Tsunami wall could have avoided disaster but boss scrapped the plan, employee testifies — Newsweek

” A worker for the plant involved the 2011 Fukushima nuclear disaster said in a Japanese court Wednesday that his former boss was warned that a massive tsunami could strike the site, but delayed measures to build a protective wall to prevent it.

An unnamed employee of the Tokyo Electric Power Company (TEPCO) that owns the ruined Fukushima Daiichi or No.1, Nuclear Power Plant testified during a trial this week that a 2008 safety test showed an earthquake could cause a tsunami as high as 52 feet capable of pounding the coastal facility, according to The Asahi Shimbun. The company was initially set to build a seawall, but the employee told the court that former TEPCO Vice President Sakae Muto suddenly dismissed the idea.

The potentially catastrophic scenario was brought up again during a meeting on March 7, 2011, compelling shocked regulators to again recommend a wall to shield the facility, The Japan Times reported. But it was too late already: A magnitude 9.0 earthquake and tsunami struck only four days later on March 11, 2011, leaving up to 18,500 people dead or missing and destroying the facility.

Three out of the six nuclear reactors at the Fukushima No.1 plant suffered devastating meltdowns. Muto, along with former TEPCO Chairman Tsunehisa Katsumata and former TEPCO Vice President Ichiro Takekuro were indicted in February 2016 and are facing trial for suspected professional negligence resulting in death or injury after the worst nuclear disaster since the Chernobyl incident in 1986.

The multi-billion dollar effort to recover the site is far past schedule and over budget, but the TEPCO has claimed some recent successes. Six years after the disaster, the melted nuclear fuel was finally founded at the bottom of the partially submerged reactors. The site was so radioactive, even the robots previously sent it could not traverse the deadly core.

Efforts to retrieve the fuel, however, have been hampered as the $324 million ice wall that penetrated 100 feet into the earth failed to stop groundwater from leaking into the site, as Reuters reported last month. In fact, the amount of groundwater seeping into the facility may have increased since the highly-anticipated ice wall was installed last August, amounting to the latest setback in a cleanup process already beset by seemingly endless complications and miscalculations.

Removing this water adds to an already growing storage crisis on the site. TEPCO deliberately added water to cool off the plant’s damaged reactors. After coming in contact with the plant, the coolant water and groundwater became tainted with a substance known as tritium, a byproduct of the nuclear process notoriously difficult to filter out of water. TEPCO has accumulated over 1 million tons of this tritium-laced water in 650 giant tanks, according to The Japan Times, and is urging the government to let the company begin dumping it into the ocean.

Some locals have protested this, however. While tritium was a natural byproduct of the nuclear process that experts have described as harmless in smaller doses and was dumped into oceans worldwide, Fukushima activists and fishermen have argued that dumping tritium, even in small quantities, would further hurt the reputation of the region, still synonymous with nuclear disaster. Nearby China and South Korea are among the nations that still restrict the import of certain products from Japan.

Lingering concerns about radiation have also reportedly kept many of the 160,000 residents that fled Fukushima from returning. Life, nevertheless, has begun to return to some parts of the crisis-stricken prefecture. The town of Okuma announced Wednesday that some citizens would be allowed to stay overnight starting next week for the first time since the March 2011 disaster, Japanese daily The Mainichi Shimbun said. ”

by Tom O’Connor, Newsweek

source with image and internal links

Advertisements

Is Fukushima doomed to become a dumping ground for toxic waste? — The Guardian

” This month, seven years after the 2011 Fukushima Daiichi reactor meltdowns and explosions that blanketed hundreds of square kilometres of northeastern Japan with radioactive debris, government officials and politicians spoke in hopeful terms about Fukushima’s prosperous future. Nevertheless, perhaps the single most important element of Fukushima’s future remains unspoken: the exclusion zone seems destined to host a repository for Japan’s most hazardous nuclear waste.

No Japanese government official will admit this, at least not publicly. A secure repository for nuclear waste has remained a long-elusive goal on the archipelago. But, given that Japan possesses approximately 17,000 tonnes of spent fuel from nuclear power operations, such a development is vital. Most spent fuel rods are still stored precariously above ground, in pools, in a highly earthquake-prone nation.

Japanese officialdom relentlessly emphasises positive messages regarding Fukushima’s short- and medium-term future, prioritizing economic development and the gradual return of skeptical evacuees to their newly “remediated” communities. Yet the return rate for the least hard-hit communities is only about 15%. Government proclamations regarding revitalisation of the area in and around the exclusion zone intone about jobs but seem geared ominously toward a future with relatively few humans.

The Fukushima prefecture government is currently promoting a plan, dubbed The Innovation Coast, that would transform the unwelcoming region into a thriving sweep of high-tech innovation. Much of the development would be directed towards a “robot-related industrial cluster” and experimental zones like a robot test field.

The test field would develop robots tailored for disaster response and for other purposes on a course simulating a wide range of hurdles and challenges already well represented in Fukushima itself. Large water tanks would contain an array of underwater hazards to navigate, mirroring the wreckage-strewn waters beneath the Fukushima Daiichi plant, where a number of meltdown-remediating underwater robots have met a premature demise in recent years.

Elsewhere on the robot test field, dilapidated buildings and other ruins would serve as a proving ground for land-based disaster-response robots, which must navigate twisted steel rods, broken concrete and other rubble. Engineered runways and surrounding radiation-hit areas would serve as prime territory for testing parlous aerial drones for a range of purposes in various weather conditions – which would be difficult or impossible to achieve elsewhere in relatively densely populated Japan.

The planned site for the test field would link with a secluded test area about 13km south along the coast to coordinate test flights over the exclusion zone’s more or less posthuman terrain.

Naturally, unlike Fukushima’s human residents, robots would be oblivious to the elevated radiation levels found outside the Fukushima Daiichi facility. In addition, prefectural officials have suggested that the exclusion zone environs could play host to a range of other services that don’t require much human intervention, such as long-term archive facilities.

Proud long-time residents of Fukushima, for their part, see all this development as a continued “colonisation” of the home prefecture by Tokyo – a well-worn pattern of outsiders using the zone for their own purposes, as were the utility representatives and officials who built the ill-fated plant in the first place.

Years of colossal decontamination measures have scraped irradiated material from seemingly every forest, park, farm, roadside, and school ground. This 16 million cubic metres of radioactive soil is now stored in provisional sites in and around the exclusion zone, waiting to be moved to an interim storage facility that has hardly been started and for which nearly half of the land has not yet even been leased.

The state has promised to remove all the contaminated soil from Fukushima after 30 years, and government officials have been scrupulous in insisting that this will be the case – for soil. Yet in a nation with about 17,000 tonnes of highly radioactive spent fuel rods and no willing candidates for secure repositories, it is only a matter of time before it becomes possible for politicians to publicly back the idea of transforming the area around Fukushima Daiichi into a secure repository.

Government officials, including those tasked with nuclear waste storage, describe the quintessentially Japanese strategy of saki-okuri, or calculated postponement, in the context of nuclear waste storage. Such perception management is a subtle business, but by quietly and unrelentingly pushing back the day of reckoning – slowly changing the terms of debate – the broadly distasteful prospect of storing Japan’s most dangerous material in its most tragically maltreated region would become gradually less intolerable to Japanese sensibilities.

The expanse of Fukushima in and around the exclusion zone represents an already contaminated area with, since 2011, far fewer residents to protest against such plans. Such a rare opportunity for relatively unopposed intervention in a struggling area will surely prove irresistible to the nuclear lobby.

Fukushima has been marginalised, disenfranchised, and outmanoeuvred for decades. After all, the electricity from Fukushima Daiichi went straight to the capital, not to Fukushima itself, which bore the risks. Since 2011, Fukushima has been saddled with the staggering burden of the meltdown’s aftermath that, despite government PR, will encumber and stigmatise its citizens for at least several decades. ”

by Peter Wynn Kirby, The Guardian

source

*The Fukushima nuclear meltdown continues unabated – Helen Caldicott, Global Research News

Dr. Helen Caldicott really tells it how it is. No sugarcoating in this article, just the cold, hard facts.

” Recent reporting of a huge radiation measurement at Unit 2 in the Fukushima Daichi reactor complex does not signify that there is a peak in radiation in the reactor building.

All that it indicates is that, for the first time, the Japanese have been able to measure the intense radiation given off by the molten fuel, as each previous attempt has led to failure because the radiation is so intense the robotic parts were functionally destroyed.

The radiation measurement was 530 sieverts, or 53,000 rems (Roentgen Equivalent for Man). The dose at which half an exposed population would die is 250 to 500 rems, so this is a massive measurement. It is quite likely had the robot been able to penetrate deeper into the inner cavern containing the molten corium, the measurement would have been much greater.

These facts illustrate why it will be almost impossible to “decommission” units 1, 2 and 3 as no human could ever be exposed to such extreme radiation. This fact means that Fukushima Daichi will remain a diabolical blot upon Japan and the world for the rest of time, sitting as it does on active earthquake zones.

What the photos taken by the robot did reveal was that some of the structural supports of Unit 2 have been damaged. It is also true that all four buildings were structurally damaged by the original earthquake some five years ago and by the subsequent hydrogen explosions so, should there be an earthquake greater than seven on the Richter scale, it is very possible that one or more of these structures could collapse, leading to a massive release of radiation as the building fell on the molten core beneath. But units 1, 2 and 3 also contain cooling pools with very radioactive fuel rods — numbering 392 in Unit 1, 615 in Unit 2, and 566 in Unit 3; if an earthquake were to breach a pool, the gamma rays would be so intense that the site would have to be permanently evacuated. The fuel from Unit 4 and its cooling pool has been removed.

But there is more to fear.

The reactor complex was built adjacent to a mountain range and millions of gallons of water emanate from the mountains daily beneath the reactor complex, causing some of the earth below the reactor buildings to partially liquefy. As the water flows beneath the damaged reactors, it immerses the three molten cores and becomes extremely radioactive as it continues its journey into the adjacent Pacific Ocean.

Every day since the accident began, 300 to 400 tons of water has poured into the Pacific where numerous isotopes – including cesium 137, 134, strontium 90, tritium, plutonium, americium and up to 100 more – enter the ocean and bio-concentrate by orders of magnitude at each step of the food chain — algae, crustaceans, little fish, big fish then us.

Fish swim thousands of miles and tuna, salmon and other species found on the American west coast now contain some of these radioactive elements, which are tasteless, odourless and invisible. Entering the human body by ingestion they concentrate in various organs, irradiating adjacent cells for many years. The cancer cycle is initiated by a single mutation in a single regulatory gene in a single cell and the incubation time for cancer is any time from 2 to 90 years. And no cancer defines its origin.

We could be catching radioactive fish in Australia or the fish that are imported could contain radioactive isotopes, but unless they are consistently tested we will never know.

As well as the mountain water reaching the Pacific Ocean, since the accident, TEPCO has daily pumped over 300 tons of sea water into the damaged reactors to keep them cool. It becomes intensely radioactive and is pumped out again and stored in over 1,200 huge storage tanks scattered over the Daichi site. These tanks could not withstand a large earthquake and could rupture releasing their contents into the ocean.

But even if that does not happen, TEPCO is rapidly running out of storage space and is trying to convince the local fishermen that it would be okay to empty the tanks into the sea. The Bremsstrahlung radiation like x-rays given off by these tanks is quite high – measuring 10 milirems – presenting a danger to the workers. There are over 4,000 workers on site each day, many recruited by the Yakuza (the Japanese Mafia) and include men who are homeless, drug addicts and those who are mentally unstable.

There’s another problem. Because the molten cores are continuously generating hydrogen, which is explosive, TEPCO has been pumping nitrogen into the reactors to dilute the hydrogen dangers.

Vast areas of Japan are now contaminated, including some areas of Tokyo, which are so radioactive that roadside soil measuring 7,000 becquerels (bc) per kilo would qualify to be buried in a radioactive waste facility in the U.S..

As previously explained, these radioactive elements concentrate in the food chain. The Fukushima Prefecture has always been a food bowl for Japan and, although much of the rice, vegetables and fruit now grown here is radioactive, there is a big push to sell this food both in the Japanese market and overseas. Taiwan has banned the sale of Japanese food, but Australia and the U.S. have not.

Prime Minister Abe recently passed a law that any reporter who told the truth about the situation could be goaled for ten years. In addition, doctors who tell their patients their disease could be radiation related will not be paid, so there is an immense cover-up in Japan as well as the global media.

The Prefectural Oversite Committee for Fukushima Health is only looking at thyroid cancer among the population and by June 2016, 172 people who were under the age of 18 at the time of the accident have developed, or have suspected, thyroid cancer; the normal incidence in this population is 1 to 2 per million.

However, other cancers and leukemia that are caused by radiation are not being routinely documented, nor are congenital malformations, which were, and are, still rife among the exposed Chernobyl population.

Bottom line, these reactors will never be cleaned up nor decommissioned because such a task is not humanly possible. Hence, they will continue to pour water into the Pacific for the rest of time and threaten Japan and the northern hemisphere with massive releases of radiation should there be another large earthquake. ”

by Helen Caldicott, Global Research News, originally published in Independent Australia

source with internal links and photos

Muons suggest location of fuel in unit 3 — World Nuclear News

” Some of the fuel in the damaged unit 3 of the Fukushima Daiichi plant has melted and dropped into the primary containment vessel, initial results from using a muon detection system indicate. Part of the fuel, however, is believed to remain in the reactor pressure vessel.

Muons are high-energy subatomic particles that are created when cosmic rays enter Earth’s upper atmosphere. These particles naturally and harmlessly strike the Earth’s surface at a rate of some 10,000 muons per square meter per minute. Muon tracking devices detect and track these particles as they pass through objects. Subtle changes in the trajectory of the muons as they penetrate materials and change in direction correlate with material density. Nuclear materials such as uranium and plutonium are very dense and are therefore relatively easy to identify. The muon detection system uses the so-called permeation method to measure the muon data.

Tokyo Electric Power Company (Tepco) installed a muon detection system on the first floor of unit 3’s turbine building. Measurements were taken between May and September this year.

Tepco said analysis of muon examinations of the fuel debris shows that most of the fuel has melted and dropped from its original position within the core.

Prior to the 2011 accident, some 160 tonnes of fuel rods and about 15 tonnes of control rods were located within the reactor core of unit 3. The upper and lower parts of the reactor vessel contains about 35 tonnes and 80 tonnes of structures, respectively.

The muon examination indicates that most of the debris – some 160 tonnes – had fallen to the bottom of the reactor pressure vessel and resolidified, with only about 30 tonnes remaining in the reactor core. Tepco said another 90 tonnes of debris remains in the upper part of the vessel.

The bulk of the fuel and structures in the core area dropped to the bottom of the reactor pressure vessel (RPV), Tepco believes. While part of the molten fuel is understood to have then fallen into the primary containment vessel (PCV), “there is a possibility that some fuel debris remains in the bottom of the RPV, though this is uncertain”, the company noted.

Similar muon measurements have already been conducted at units 1 and 2 at Fukushima Daiichi. Measurements taken at unit 1 between February and September 2015 indicated most of the fuel was no longer in the reactor’s core area. Measurements taken between March and July 2016 at unit 2 showed high-density materials, considered to be fuel debris, in the lower area of the RPV. Tepco said that more fuel debris may have fallen into the PCV in unit 3 than in unit 2.

Tepco said the results obtained from the muon measurements together with knowledge obtained from internal investigations of the primary containment vessels using remote-controlled robots will help it plan the future removal of fuel debris from the damaged units. ”

by World Nuclear News

source with illustration of Unit 1-3

New proposal suggests removing Fukushima plant’s melted nuclear fuel from side — The Mainichi

” A method to remove melted nuclear fuel debris on the bottom of the containment vessels of Fukushima No. 1 Nuclear Power Plant’s first, second and third reactors from the side was proposed by the Nuclear Damage Compensation and Decommissioning Facilitation Corporation (NDF) on July 31.

Hajimu Yamana, head of the NDF, which is tasked with considering how to remove fuel debris from the reactors, for the first time explained the organization’s specific method proposal to the heads of local governments at a countermeasures for the decommissioning and handling of the contaminated water council meeting held in Iwaki, Fukushima Prefecture.

The method would focus on prioritizing the removal of debris from the bottom of the vessels from the side, using robotic arms and other remote devices while flushing water over the debris. However, ways to block radiation and countermeasures against the scattering of airborne radioactive dust still remain unsolved. The central government and Tokyo Electric Power Co. (TEPCO) plan to finalize their policy to remove the debris and amend the decommission schedule in September.

In all three of the reactors, contaminated water has collected at the bottom of the containment vessels. The NDF had previously considered a “flooding method” that would fill the containment vessels completely with water to block radiation from leaking. However, measures to repair the containment vessels and prevent leakage of the radioactive water would be difficult, so the plan was put aside for having “too many issues.” “

by The Mainichi

source

Fukushima cleanup chief urges better use of probe robot — The Seattle Times

” TOKYO (AP) — The head of decommissioning for the damaged Fukushima nuclear plant said Thursday that more creativity is needed in developing robots to locate and assess the condition of melted fuel rods.

A robot sent inside the Unit 2 containment vessel last month could not reach as close to the core area as was hoped for because it was blocked by deposits, believed to be a mixture of melted fuel and broken pieces of structures inside. Naohiro Masuda, president of Fukushima Dai-ichi Decommissioning, said he wants another probe sent in before deciding on methods to remove the reactor’s debris.

Unit 2 is one of the Fukushima reactors that melted down following the 2011 earthquake and tsunami.

The plant’s operator, Tokyo Electric Power Co., needs to know the melted fuel’s exact location as well as structural damage in each of the three wrecked reactors to figure out the best and safest ways to remove the fuel. Probes must rely on remote-controlled robots because radiation levels are too high for humans to survive.

Despite the incomplete probe missions, officials have said they want to stick to their schedule to determine the removal methods this summer and start work in 2021.

Earlier probes have suggested worse-than-anticipated challenges for the plant’s cleanup, which is expected to take decades. During the Unit 2 probe in early February, the “scorpion” robot crawler stalled after its total radiation exposure reached its limit in two hours, one-fifth of what was anticipated.

“We should think out of the box so we can examine the bottom of the core and how melted fuel debris spread out,” Masuda told reporters.

Probes are also being planned for the other two reactors. A tiny waterproof robot will be sent into Unit 1 in coming weeks, while experts are still trying to figure out a way to access the badly damaged Unit 3.

TEPCO is struggling with the plant’s decommissioning. The 2011 meltdown forced tens of thousands of nearby residents to evacuate their homes, and many have still not been able to return home due to high radiation levels.

Cleanup of communities outside of the plant is also a challenge. The cost has reportedly almost doubled to 4 trillion yen ($35 billion) from an earlier estimate. On Thursday, police arrested an Environment Ministry employee for allegedly taking bribes from a local construction firm president, media reports said. ”

by Mari Yamaguchi, The Associated Press

source