This article does an excellent job of presenting the environmental effects of radiation according to field studies from both Chernobyl and Fukushima.
Let me highlight the concluding paragraph of Winifred Bird and Jane Braxton Little :
” … Kiyomi Yokota, the Fukushima naturalist, rarely takes his daughters to play in the woods as he did before the accident. The stress of making sure his three-year-old never touches the dirt or licks her fingers is simply too exhausting. “Just like that, everything changed,” he says. Amid the stress is a sadness fueled by the knowledge that the changes are human caused, that they are irrevocable, and that they will last long after those responsible for the nuclear accidents at Chernobyl and Fukushima have passed away. ”
In addition, the green sidebar next to the main article includes a neat little piece on the proposed options for radioactive waste storage. Both of these articles are really worth reading completely.
[ [ Forever Is a Long Time
Even when nuclear power plants perform as designed, they present a problem: What to do with the radioactive wastes? Some types of spent fuel will be dangerous for 240,000 years, others for more than 2 million years. Taking responsibility for these contaminants stretches the proverbial seven generations of sustainability to 11,000 human generations – an inconceivable time span.
So far the nuclear industry has not come up with a safe solution. Engineers have considered a range of possibilities that verge on science fiction at one extreme and reckless abandon at the other. The industry has considered sending radioactive waste into outer space – an option it considers attractive because it removes it from our environment. The risks, however, are potentially catastrophic: If the vessel carrying the waste has an accident, it could spread radioactive material into the atmosphere. Then there’s the
Antarctica solution – placing radioactive wastes on ice sheets where their own heat would bury them. But international treaties ban such activity and the notion of violating the planet’s last pristine continent has put a damper on the scheme.
There have been discussions about burying nuclear waste in the sea floor. One option involves encasing spent fuel in concrete and dropping it in torpedoes designed to penetrate it into the ocean bed. Even more audacious is the proposal to deposit radioactive waste in a subduction zone, where plate tectonics would slowly carry it downward into Earth’s mantle. Violating international oceanic agreements is just one of the reasons these approaches are not being seriously considered. Another is the fear of leaks and the resultant widespread contamination.
The current focus is on burying radioactive wastes underground. Finland is in the process of constructing the first of these deep geological repositories – a 1,710-foot-deep facility called Onkalo, which means “cavity” in Finnish. Engineered to last 100,000 years, the facility is supposed to be large enough to accept boron steel canisters of spent fuel for up to 100 years, when the cavity will be backfilled and sealed. Canister burial will begin in 2020.
The United States has also been pursuing deep burial. In 2002 Congress designated Nevada’s Yucca Mountain as a repository for spent fuel and other radioactive wastes. By then planners had already constructed a five-mile-long tunnel and a series of cathedral-like chambers to experiment with various storage designs. The Obama administration quashed the controversial project in 2010, leaving the country without a long-term storage site. The 65,000 tons of spent nuclear fuel from the 104 nuclear power plants in the US are currently stored onsite – 80 percent in water-filled pools, which are considered less safe than the steel casks that store the remaining 20 percent.
In addition to the technical challenges, nuclear power presents a political dilemma. No nation has lasted for 1,000 years, much less the 240,000 years plutonium will remain dangerous. Who will oversee radioactive waste when the governments of the 31 countries now producing it have crumbled? And how will these toxic repositories be identified when current languages are obsolete and the metal warning signs have rusted away?
The nuclear power industry faces an uncertain future unless it can successfully address waste management, says Allison Macfarlane, chair of the US Nuclear Regulatory Commission. The post-Fukushima world demands redefining a successful nuclear power program to include not only the safe production of electricity but also the secure and sustainable lifecycle of nuclear power – from uranium mining to the disposal of spent fuel. If this cannot be achieved, Macfarlane says, “then the public in many countries will reject nuclear as an energy choice.”
—Jane Braxton Little ] ]